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Abstract
In the evolving landscape of autonomous vehicles, ensuring ro-
bust in-vehicle network (IVN) security is paramount. This paper
introduces an advanced intrusion detection system (IDS) called KD-
XVAE that uses a Variational Autoencoder (VAE)-based knowledge
distillation approach to enhance both performance and efficiency.
Our model significantly reduces complexity, operating with just
1669 parameters and achieving an inference time of 0.3 ms per
batch, making it highly suitable for resource-constrained automo-
tive environments. Evaluations in the HCRL Car-Hacking dataset
demonstrate exceptional capabilities, attaining perfect scores (Re-
call, Precision, F1 Score of 100%, and FNR of 0%) under multiple
attack types, including DoS, Fuzzing, Gear Spoofing, and RPM
Spoofing. Comparative analysis on the CICIoV2024 dataset fur-
ther underscores its superiority over traditional machine learning
models, achieving perfect detection metrics. We furthermore inte-
grate Explainable AI (XAI) techniques to ensure transparency in
the model’s decisions. The VAE compresses the original feature
space into a latent space, on which the distilled model is trained.
SHAP (SHapley Additive exPlanations) values provide insights into
the importance of each latent dimension, mapped back to origi-
nal features for intuitive understanding. Our paper advances the
field by integrating state-of-the-art techniques, addressing critical
challenges in the deployment of efficient, trustworthy, and reli-
able IDSes for autonomous vehicles, ensuring enhanced protection
against emerging cyber threats.

CCS Concepts
• Security and privacy→ Artificial immune systems; Intru-
sion detection systems; • Computing methodologies → Arti-
ficial intelligence.

Keywords
In-vehicle network, knowledge distillation, security and privacy,
VAE, XAI
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1 Introduction
The emergence of autonomous vehicles (AVs) and the widespread
integration of connected cars have significantly transformed the
landscape of modern transportation, offering unprecedented levels
of safety, efficiency, and convenience. Central to these technologi-
cal advancements is the in-vehicle network (IVN), which enables
seamless communication among various electronic control units
(ECUs) that govern essential vehicular functions, including adaptive
cruise control, lane-keeping assistance, and real-time navigation
[33, 34]. However, the increasing connectivity of IVNs introduces
significant cyber vulnerabilities, primarily due to the lack of robust
security measures such as authentication and encryption. These
weaknesses can be exploited by malicious actors to carry out cy-
ber attacks, compromising passenger safety and undermining the
operational integrity of vehicles [17].

Intrusion Detection Systems (IDS) are essential for enhancing the
security of IVNs. While traditional IDS approaches are somewhat
effective, they often fail to address the sophisticated and evolving
nature of cyber threats targeting IVNs. The dynamic nature of these
attacks requires more advanced and flexible solutions. Recent ad-
vances in artificial intelligence (AI), particularly inmachine learning
(ML) and deep learning (DL), offer promising solutions to improve
IVN security. These technologies can analyze vast amounts of net-
work traffic data, learn intricate patterns of normal and anomalous
behaviors, and detect previously unknown attack vectors in real
time [16, 32].

However, deploying ML and DL-based IDS in IVNs presents sev-
eral challenges. A significant issue is the black-box nature of these
models, which obscures their decision-making processes and dimin-
ishes the trust of stakeholders in their reliability. This lack of trans-
parency, along with the resource-intensive nature of these models,
is particularly concerning in the automotive industry, where safety
and sustainable computing are paramount [4, 7, 9, 24]. Existing
studies reveal significant gaps in current IDS solutions for IVNs,
particularly in providing clear explanations for detections, which is
crucial for gaining stakeholder trust and ensuring regulatory com-
pliance [3, 7]. Furthermore, the high computational demand and
complexity of training these models pose practical challenges for
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real-time deployment in vehicles [17, 33]. These limitations under-
score the need for innovative solutions that balance performance,
explainability, and efficiency.

In this context, our paper introduces an advanced IDS for the
Controller Area Network (CAN) — the most prominent IVN proto-
col — utilizing a variational autoencoder (VAE)-based knowledge
distillation approach with an emphasis on sustainable and explain-
able AI. This method not only improves the efficiency and accuracy
of anomaly detection but also ensures computational efficiency,
making it suitable for deployment in resource-constrained environ-
ments. The primary contributions of this paper are as follows:

• Improving Anomaly Detection in IVN Security with
VAE-based Knowledge Distillation: By employing VAEs
and knowledge distillation techniques, we enhance the detec-
tion capabilities of the IDS, making it more effective in iden-
tifying subtle and complex anomalies within IVNs [33, 34].

• Sustainable Computing (Time & Data Efficient): Our
approach optimizes the computational resources required
for training and deploying IDS models, making it feasible to
implement in resource-constrained environments typical of
autonomous vehicles [3, 17].

• Enhancing Reliability of IVN Security Models: By in-
corporating sustainable AI methods, we ensure that the
IDS models are not only accurate but also efficient, thereby
increasing the trust and reliability of the security system
among stakeholders [7, 9].

• Optimal Model Training Strategies for IVN Security
using Knowledge Distillation in Deep Learning Mod-
els: Our study explores optimal strategies for training deep
learning models using knowledge distillation, ensuring that
the IDS models are not only accurate but also interpretable
and efficient [1, 4].

• Explainability of IVN Security Models: By integrating
Explainable AI (XAI) methodologies, specifically SHapley
Additive exPlanations (SHAP), we provide a comprehensive
understanding of the model’s decision-making processes.
This transparency enhances stakeholder trust and allows for
actionable insights into the security of IVN systems, reinforc-
ing the robustness and reliability of our proposed framework
[18].

This paper aims to advance IVN security by developing a robust,
efficient, and sustainable IDS framework that addresses the unique
challenges of modern autonomous vehicles. The integration of
knowledge distillation into the IDS enhances its performance, pro-
viding a comprehensive solution for securing in-vehicle networks
against emerging cyber threats.

Our proposed IDS framework, KD-XVAE, demonstrates remark-
able performance across two distinct datasets. On the HCRL Car
Hacking Dataset, our framework attains an F1 score, precision, re-
call, and accuracy of 1.0, accompanied by a low inference time of
0.3 milliseconds per batch. Similarly, on the CIC-IOV2024 dataset,
KD-XVAE achieves perfect scores of 1.0 in F1 score, precision, recall,
and accuracy. These outcomes represent a significant advancement
over current methodologies. Furthermore, KD-XVAE surpasses tra-
ditional machine learning models on the CIC-IOV2024 dataset,

underscoring its exceptional capability in accurately identifying
and mitigating cyber threats within in-vehicle networks.

Notably, while there exists another proposed model that achieves
perfect scores across all classes on the HCRL Car Hacking Dataset,
KD-XVAE framework distinguishes itself through its superior pa-
rameter efficiency and reduced inference time per batch, making it
a more practical and efficient solution for real-world applications.

The rest of the paper is structured as follows. Section 2 provides
a comprehensive review of related work. Section 3 describes the
proposed IDS framework, focusing on the integration of VAE-based
knowledge distillation and sustainable AI practices. This section
also covers the experimental setup, including the datasets and per-
formance metrics used for the evaluation. Section 4 presents and
compares the results of the ablation study of the proposed system
with other state-of-the-art methods. Section 5 discusses shortcom-
ings of this work and provides suggestions for future work before
we concludes the paper in Section 6.

2 Related Work
This section provides a comprehensive review of the existing lit-
erature on security mechanisms designed to detect vulnerabilities
and address security issues within autonomous vehicle IVNs. Ad-
ditionally, it explores AI-based approaches for enhancing security
within these networks.

2.1 Intrusion Detection Systems in IVNs
Intrusion Detection Systems (IDSes) are essential for securing net-
works such as the Controller Area Network (CAN) in vehicles,
which inherently lack robust security features. Various strategies
have been developed for detecting intrusions within CAN buses,
employing different data analysis and ML techniques.

Rajapaksha et al. [27] categorized IDS approaches for in-vehicle
networks into four primary types:

• Fingerprint-based (bus level)
• Parameter-monitoring-based (message level)
• Information-theoretic-based (data-flow level)
• Machine-learning-based (functional level)

Among these, the ML and DL methods have shown significant ef-
ficacy in identifying novel attacks on CAN buses through a compre-
hensive data analysis. Sun et al. [30] further classified intrusion de-
tection algorithms into three groups: semantic-based, data-domain-
based, and periodicity-based approaches. Semantic-based methods
analyze the semantics of CAN messages. For instance, Zhao et al.
[35] utilized an Artificial Neural Network (ANN) to enhance IDS
precision. Data domain-based methods, such as those proposed
by Qin et al. [26], predict CAN messages using long-short-term
memory (LSTM) networks. Periodicity-based methods, exemplified
by the LSTM-based approach from Hossain et al. [12], leverage the
temporal patterns of CAN messages to detect anomalies, achieving
high accuracy rates.

2.2 Integration of Advanced Techniques
Recent studies have integrated spatial and temporal features to en-
hance detection capabilities. Lo et al. [17] combined Convolutional
Neural Networks (CNN) and LSTMs to successfully identify suspi-
cious activities on the CAN bus. Despite their effectiveness, these
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models have limitations, such as susceptibility to replay attacks.
Transfer learning has also been applied to IDS for IVNs. Yang et
al. [34] demonstrated significant performance improvements using
transfer learning in small data sets. Khatri et al. [14] showed that
combining transfer learning with CNN-LSTM could significantly
enhance performance through one-shot learning. To address the
limitations of Recurrent Neural Networks (RNNs), such as vanish-
ing and exploding gradient issues, attention mechanisms have been
introduced. Similarly, Sun et al. [30] combined CNN-LSTM with
attention to improve model robustness.

Self-Attention Mechanisms and Transformer Architectures.
To overcome the challenges associated with RNNs, recent research
has explored self-attention mechanisms. Nam et al. [21] utilized
bidirectional Generative Pre-trained Transformer (GPT) for binary
classification in vehicle IDS, while Nguyen et al. [23] proposed
a transformer-based approach, outperforming traditional and DL
models in both efficiency and precision. Gupta et al. [8] further
improved transformer models by incorporating CNN in the embed-
ding layer, improving prediction performance .

Machine Learning for IVN Security. Qayyum et al. [25] pro-
vided a comprehensive review of the challenges associated with
the deployment of ML in vehicular networks, particularly focus-
ing on security concerns in developing DL pipelines for connected
and autonomous vehicles. Talpur and Gurusamy [31] evaluated the
adoption of DL for automotive network security, analyzing various
DL-based solutions and their effectiveness in intrusion detection,
authentication, and privacy protection within vehicle communi-
cation systems. Gupta et al. [8] introduced an attention-enabled
hierarchical deep neural network (AHDNN) to detect intrusions
and ensure the safety of smart vehicles at both the node and the net-
work levels. Ashraf et al. [2] utilized DL for intrusion detection in
transportation systems, employing a LSTM autoencoder to identify
malicious network behaviors in IVNs and vehicle-to-infrastructure
networks. Mehedi et al. [20] proposed a LeNet-based deep transfer
learning IDS model with active attribute selection to recognize and
differentiate malicious CAN messages.

Explainable AI for IVN Security. While these methods have
shown high effectiveness, their opaque black-box nature presents
significant challenges. The lack of transparency and interpretabil-
ity in their decision-making processes diminishes their reliability
and trustworthiness, particularly from an industry standpoint. The
automotive sector demands security solutions that not only achieve
high detection accuracy, but also offer clear explanations for the
detected anomalies. To meet this need, there is a growing focus on
developing interpretable models. Madhav et al. [19] explored the
use of explainable AI to improve decision making in autonomous
vehicle systems. Houda et al. [13] proposed a framework incorporat-
ing explainable AI to improve the trustworthiness of deep learning
techniques in intrusion detection. This framework helps cyberse-
curity experts systematically elucidate decision-making processes,
thereby strengthening IoT network security. Renda et al. [28] ex-
amined the role of explainable AI in federated learning to advance
technologies for next-generation 5G and 6G networks, with a focus
on vehicle-to-everything applications.

Building on these cutting-edge methodologies, our study aims to
develop an advanced IDS for vehicle CAN buses, using transformer
architecture. This approach takes advantage of the latest advances
in machine learning, deep learning, and sustainable AI to create a
robust and efficient IDS capable of addressing the unique challenges
posed by IVNs in autonomous vehicles.

3 Methodology
3.1 Threat Model
Understanding the specific characteristics and potential impacts
of these attacks is essential to develop effective IDS. Each attack
type exhibits unique patterns and behaviors that can be utilized to
create robust detection algorithms. By incorporating comprehen-
sive datasets such as the HCRL Car-Hacking [29] and CIC-IoV [22]
datasets (see Section 4.1 for detailed description), researchers can
simulate a diverse range of attack scenarios and assess the resilience
of IDS against advanced cyber threats. In the following, we provide
detailed descriptions of the attack types included in these popular
datasets to elucidate their characteristics and potential impacts on
vehicle security.

Denial of Service (DoS). A DoS attack aims to overwhelm the
vehicle’s CAN bus with an excessive number of messages. This
flood of traffic can effectively block legitimate messages from being
transmitted, disrupting normal vehicle operations. In a DoS sce-
nario, the vehicle’s ECUs may be unable to communicate critical
information, leading to potential safety hazards and system failures.
On the CAN bus, a DoS attack is very straightforward as CAN
messages with low identifiers (IDs) have higher priority and can
thus prevent messages with higher IDs from communicating on
the bus. As a result, injecting a message with CAN ID 0x0 would
block any legitimate traffic on the bus.

Fuzzing. Fuzzing attacks involve sending a large number of
random, misformed, or unexpected messages to the CAN bus to
discover vulnerabilities within the vehicle’s ECUs. By exposing
the system to a variety of unexpected inputs, fuzzing can reveal
weaknesses that can be exploited to cause the ECUs to malfunction
or crash, thereby compromising vehicle safety and functionality.

Spoofing Attacks. Spoofing attacks on vehicular systems in-
volve the injection of falsified data into the CAN bus, disrupting
the accuracy of critical system readings and undermining vehicle
performance and safety. There is a myriad of vehicular signals on
the CAN bus that is subject to spoofing attacks, with the most
prominent being RPM, gear, gas, speed, and steering wheel angle
[22, 29].

3.2 Data Pre-processing and Feature Scaling
Prior to training the IDS, rigorous data pre-processing steps were
taken to ensure data quality and consistency. These steps included:

(1) Missing Value Handling: Any missing or incomplete data
entries were identified and addressed by imputation tech-
niques or by discarding incomplete records to maintain the
integrity of the dataset.

(2) Data Conversion: The CAN IDs, originally in hexadecimal
format, were converted to decimal to facilitate numerical
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proceWssing. This transformation was essential to standard-
ize the data and ensure compatibility with machine learning
algorithms.

(3) Normalization: To mitigate the effects of varying scales
and units across different features, a Min-Max Scaler was
employed. This scaling technique normalized the data within
the range [0, 1], ensuring that all characteristics contributed
equally to the learning process. This step was crucial for
enhancing the convergence rate of the machine learning
models and preventing any single feature from dominating
the learning process. The Min-Max normalization formula
is defined as follows:

𝑥 ′ =
𝑥 − 𝑥min

𝑥max − 𝑥min
(1)

where 𝑥 is the original value, 𝑥 ′ is the normalized value,
𝑥min is the minimum value of the feature, and 𝑥max is the
maximum value of the feature.

3.3 Strategic Data Partitioning for Model
Evaluation

To ensure a robust evaluation of the IDS, the datasets were divided
into training and testing sets. In an unconventional approach aimed
at rigorously testing the IDS, only 5% of the data was used for train-
ing, while the remaining 95%was reserved for testing. This split was
chosen to simulate real-world scenarios where models must per-
form well even with limited training data. The split ensured that the
model was tested on a diverse and extensive dataset, highlighting
its generalization capabilities and robustness.

3.4 Proposed Model Architecture
To build a robust and efficient IDS, we employed a combination of
advanced techniques, including VAEs and Knowledge Distillation.

3.4.1 Variational Autoencoder (VAE). The VAE architecture was
chosen for its ability to learn latent representations of the data,
capturing the underlying distribution of normal and anomalous
patterns in IVNs. The VAE consisted of an encoder, which mapped
the input data to a latent space, and a decoder, which reconstructed
the input data from the latent space. The reconstruction error was
then used to identify anomalies. The key parameters and structures
of the VAE are summarized in Table 1.

Encoder and Decoder Layers. The encoder and decoder were
designed with multiple dense layers, employing ReLU activations
to capture complex non-linear relationships.

Latent Space Dimension. The dimension of the latent space
was carefully selected to balance the trade-off between reconstruc-
tion fidelity and computational efficiency.

Regularization. KL-divergence regularization was applied to
ensure the latent space followed a standard normal distribution,
facilitating better generalization and anomaly detection.

3.4.2 Knowledge Distillation. Knowledge distillation, initially pro-
posed by Hinton et al. [10], facilitates the transfer of knowledge
from a large and complex model (referred to as teacher) to a smaller
and simpler model (referred to as student). The core motivation

Table 1: Hyperparameter Configuration for CHD and CIC
IOV Datasets

Hyperparameter Values for CHD Values for CIC IOV

Smooth factor 1e-06 1e-08
Number of encoder layers 3 3
Batch size 32 32
Learning rate 0.0001 0.0001
Epochs 1 50

behind knowledge distillation is to enable the student model to
emulate the behavior of the teacher model, thereby achieving high
accuracy with reduced computational demands.

Proxy Dataset Selection. The process of knowledge transfer
typically requires a proxy dataset to act as the medium for transfer.
Commonly, this proxy dataset is a mutually exclusive dataset; alter-
natively, some methods may employ an autoencoder or Generative
Adversarial Network (GAN) to synthesize a suitable dataset.

Soft Targets for Knowledge Transfer. Once the proxy dataset
is selected, the soft targets used for knowledge transfer are typically
derived from the class probabilities of the teacher model’s output
layer (logits) or from feature representations within its interme-
diate layers (feature maps). These soft targets encapsulate more
informative and nuanced representations compared to the hard
labels utilized in conventional training paradigms.

Loss Function. In traditional knowledge distillation, the loss
function comprises two components: a standard cross-entropy loss
term and a distillation loss term. The distillation loss term is of-
ten defined as the Kullback-Leibler (KL) divergence between the
softmax outputs of the teacher and student models:

𝐿𝐾𝐿 (𝑆 ∥ 𝑇 ) =
∑︁
𝑖

𝑆𝑖 (𝜎 (𝑧)) log
(
𝑆𝑖 (𝜎 (𝑧))
𝑇𝑖 (𝜎 (𝑧))

)
(2)

where 𝑆 and 𝑇 represent the logits of the student and teacher
models, 𝜎 denotes the softmax function, and 𝑇 is a temperature
parameter that smooths the probability distributions.

Training Approach. Our approach involves pre-training the
teacher model on the full dataset to achieve high accuracy, gen-
erating soft labels from the teacher model’s predictions, and then
training the student model using a combination of hard and soft la-
bels to inherit the knowledge of the teacher model while remaining
computationally efficient.

Using knowledge distillation, our IDS achieves a balance between
high detection accuracy and reduced computational resource re-
quirements, making it suitable for real-time applications in resource-
constrained environments.

3.4.3 Explainable AI (XAI). Interpretability is a fundamental aspect
of our framework, enhancing trust and providing deep insight
into the decision-making processes of our models. To illuminate
the predictions made by the student model trained on the latent
space representations from the VAE, we employ XAI techniques,
focusing specifically on Shapley Additive Explanations (SHAP).
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Figure 1: Proposed Model Architecture

SHAP values provide a consistent measure of feature importance,
ensuring interpretability at both local and global levels [5].

The SHAP framework computes the Shapley values for each
feature, quantifying their contributions to the model’s predictions.
The Shapley value for a feature is calculated as follows [18]:

𝜙𝑖 =
∑︁

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |! [𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)] (3)

where 𝜙𝑖 represents the Shapley value for feature 𝑖 , 𝑁 is the set
of all features, 𝑆 denotes a subset of features and 𝑣 (𝑆) is the value
function reflecting the prediction of the model with subset 𝑆 .

In our implementation, the VAE is utilized to compress the origi-
nal high-dimensional feature space into a lower-dimensional latent
space. The teacher/student model is then trained on these latent
representations. To ensure transparency and comprehensibility of
the model’s decisions, we apply SHAP to the latent space. SHAP val-
ues indicate the importance of each latent dimension in the model’s
predictions. In addition, we map these latent dimensions back to
the original features to provide a more intuitive understanding of
the behavior of the model. This mapping, though simplified, offers
valuable insights into how original features influence the latent
space and, consequently, the model’s predictions.

However, during the implementation of XAI techniques, we faced
significant challenges related to memory consumption and process-
ing time. The computational intensity of these methods necessitated
the creation of a smaller, balanced subset of our dataset to enable
more efficient analysis. This subset, consisting of 245,919 instances,

was carefully curated to ensure an equal representation of each data
category, thereby preserving the integrity and representatives of
the original dataset. Despite the reduced size, KD-XVAE achieved
an impressive macro average F1 score of 0.99, demonstrating the
effectiveness of our approach and the robustness of the subset in
maintaining essential data characteristics.

By integrating SHAP into our framework, we not only improve
the applicability of the model in real-world scenarios, but also
provide stakeholders with actionable insights into the security and
robustness of IoV systems. Thus, our framework enables both the
reliability and interpretability necessary for effective deployment
in practical applications.

4 Evaluation
In evaluating the performance of our proposed model against es-
tablished competitors, we observed significant improvements in
both efficiency and accuracy metrics.

4.1 Datasets
In this paper, two primary datasets were utilized to evaluate the
performance of the IDS for IVNs, as detailed below:

HCRL Car-Hacking. Collected by the Hacking and Counter-
measure Research Lab (HCRL), this dataset is a comprehensive re-
source for automotive cybersecurity. It includes both benign CAN
traffic and four distinct types of attacks—Denial of Service (DoS),
Fuzzing, RPM Spoofing, and Gear Spoofing. The data were gathered
from a Hyundai YF Sonata vehicle under real-world conditions,
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providing a robust foundation for IDS development. Each CAN
message includes a timestamp, an 11-bit CAN ID in HEX format
(converted to DEC), data length, 8-byte data, and a flag indicating
whether the message is normal or injected. Sequential samples
(𝑛 = 29) are aggregated to form data frames, labeled according to
the attack type if any injected message is present [29].

Canadian Institute for Cybersecurity Internet of Vehicles
(CIC-IoV). This dataset features DoS attacks and various spoofing
scenarios conducted on a 2019 Ford vehicle. Attacks were executed
under controlled conditions with the vehicle stationary, ensuring
safety. It encompasses DoS, Gas Spoofing, Steering Wheel Spoofing,
Speed Spoofing, and RPM Spoofing. Each entry contains a timestamp,
CAN ID, Data Length Code (DLC), data bytes, and a flag indicating
normal or injected messages. Sequential data frames are created
by aggregating samples (𝑛 = 7), facilitating effective analysis and
anomaly detection [22].

These datasets provide a comprehensive foundation for the de-
velopment and evaluation of IDS in IVNs, enhancing the security
and resilience of autonomous vehicles against sophisticated cyber
threats, as summarized in Table 2.

4.2 Experimental Setup and Evaluation Metrics
The experiments are executed on a system featuring an Intel Core
i9-13900K processor clocked at 3.0 GHz, 64 GB of DDR4 RAM, 1 TB
SSD storage, and an NVIDIA GeForce RTX 3090 GPU with 24 GB
of VRAM running Ubuntu 20.04 LTS.

In this study, we conducted comprehensive experiments to eval-
uate the performance of our proposed IDS model. The experiments
were designed to rigorously test the model’s ability to detect vari-
ous types of cyber attack on IVNs. The evaluation was carried out
using standard performance metrics and baseline comparisons with
existing state-of-the-art IDS solutions. The key metrics used in this
study are defined as follows:

• Performance Metrics: Metrics such as accuracy, precision,
recall, and 𝐹1-score were calculated to assess the model’s
detection capabilities. These metrics provided a holistic view
of the model’s effectiveness in identifying both normal and
anomalous CAN messages.

• Number of Parameters:

Number of Parameters =
𝐿∑︁
𝑖=1

Parameters(𝑖) (4)

where𝐿 is the number of layers in themodel, and Parameters(𝑖)
represents the number of parameters in the 𝑖-th layer.

• Inference Time per Batch:

Inference Time (ms) =
(
End Time − Start Time

Batch Size

)
(5)

Inference time per batch measures the time taken by the
model to make predictions on a batch of input data. This
metric indicates the efficiency and speed of the model during
inference.

These comprehensive baseline comparisons illustrate the robust-
ness, efficiency, and advanced capabilities of our proposed IDS
model, establishing it as a leading solution for enhancing IVN secu-
rity in autonomous vehicles.

4.3 Performance Evaluation on HCRL
Car-Hacking Dataset

Table 4 provides a comprehensive comparison of performance met-
rics for various IDS models in the HCRL Car Hacking dataset, cov-
ering different attack types such as DoS, Fuzzing, Gear Spoofing,
and RPM Spoofing. The detailed results are outlined below:

• DoS attacks: KD-XVAE achieves an FNR of 0%, matching
the perfect performance of the Transformer [23] and Time-
Embedded Transformer [15]. The Recall, Precision, and F1
Score for KD-XVAE are all 1.0, indicating flawless detec-
tion and classification of DoS attacks. This performance is
on par with the best models but with a significantly lower
computational footprint.

• Fuzzing attacks: KD-XVAE again demonstrates a perfect
performance with an FNR of 0%, and Recall, Precision, and
F1 Scores of 1.0. This surpasses the performance of models
like Rec-CNN [6], which shows a high FNR of 17.0% and
lower recall and precision values. The superiority of KD-
XVAE in handling Fuzzing attacks highlights its robustness
in identifying subtle and complex anomalies.

• Gear Spoofing attacks: KD-XVAE maintains an FNR of 0%
and perfect scores in Recall, Precision, and F1 Score. This
is a significant achievement compared to models like the
LSTM [23] and CNN-LSTM [23], which have lower accuracy
metrics. The high performance across all metrics confirms
KD-XVAE’s ability to effectively detect and classify Gear
Spoofing attacks.

• RPM Spoofing attacks: KD-XVAE consistently delivers
an FNR of 0%, with Recall, Precision, and F1 Score all at
1.0. This performance is comparable to the Time-Embedded
Transformer [15] and superior to traditional models like
DCNNResNet [29], which, despite high precision, have lower
recall values and higher FNRs.

In essence, KD-XVAE achieves perfect detection metrics (Recall,
Precision, F1 Score of 1.0 and FNR of 0%) across all attack types in the
HCRL Car-Hacking dataset. Performance consistency is particularly
evident when compared to other models such as the Transformer
[23] and the Time-Embedded Transformer [15], both of which also
achieved high metrics but with greater computational demands.

4.4 Comparative Analysis on CICIoV2024
Dataset

Table 5 highlights the performance of KD-XVAE compared to tra-
ditional machine learning models on the CICIoV2024 dataset. The
results clearly demonstrate the superiority of KD-XVAE in terms
of accuracy and detection capabilities.

• Accuracy: KD-XVAE achieves a perfect accuracy score of
1.0, surpassing Logistic Regression (0.89), AdaBoost (0.92),
Deep Neural Network (0.96), and Random Forest (1.0) [22].
This indicates KD-XVAE’s ability to classify all instances
correctly.

• Recall: With a recall of 1.0, KD-XVAE detects all attack
instances. In comparison, Logistic Regression and AdaBoost
show recalls of 0.50 and 0.66, respectively, while Deep Neural
Network and Random Forest achieve 0.76 and 1.0.
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Table 2: Datasets Used for Vehicle Attack Analysis

Dataset Vehicle Attacks Included Conditions Data Features Number of Samples

HCRL Car-Hacking [29] Hyundai YF Sonata

DoS
Fuzzing
RPM Spoofing
Gear Spoofing

Real conditions

Timestamp
CAN ID (HEX to DEC)
Data Length
Data bytes
Normal/Injected Flag
Sequential samples (n=29)

∼16,558,462

CIC-IoV [22] 2019 Ford vehicle

DoS
Gas Spoofing
Steering Wheel Spoofing
Speed Spoofing
RPM Spoofing

Controlled conditions

Timestamp
CAN ID (HEX to DEC)
DLC
Data bytes
Normal/Injected Flag
Sequential samples (n = 7)

∼1,408,219

Table 3: Comparison of Model Complexity and Inference Time per Batch

Model Parameters (millions) Inference time / batch (ms)

Time-embedded Transformer with AutoEncoder [15] 0.259 3.58
Transformer [23] 2.67 11.6
Time-embedded Transformer [15] 0.256 3.42
Teacher Model 0.00435 0.3
Student Model 0.0016 0.3

• Precision: KD-XVAE’s precision is also 1.0, indicating no
false positives. Traditional models like Logistic Regression
and AdaBoost have lower precision (0.48 each), whereas
Deep Neural Network and Random Forest show 0.83 and 1.0,
respectively.

• F1 Score andBalancedPerformance: KD-XVAE’s F1 scores
of 1.0, reflecting the harmonic mean of precision and recall,
were consistently perfect, showcasing a balanced perfor-
mance in detecting intrusions while maintaining high pre-
cision and recall rates. Logistic Regression and AdaBoost
have lower F1 scores of 0.49 and 0.51, respectively, while
Deep Neural Network and Random Forest score 0.78 and
1.0. This balance is essential for effective and reliable IDS
performance in dynamic and varied IVN environments.

Thus, KD-XVAE outperforms traditional machine learning mod-
els in the CICIoV2024 data set across all key performance metrics,
showcasing its exceptional capability in detecting and classifying
intrusions accurately and efficiently. These results validate the ef-
ficacy and superiority of our advanced deep learning approach in
enhancing the security of in-vehicle networks.

4.5 Model Complexity and Inference Time
KD-XVAE’s architecture, designed to be more compact, utilizes only
1669 parameters provided in Table 3. This is a considerable reduc-
tion compared to the Time-Embedded Transformer with Autoen-
coder, which operates with 259k parameters [15]. The streamlined
parameter count directly correlates with reduced computational
overhead, making KD-XVAEmore suitable for resource-constrained
environments typical of autonomous vehicles.

In terms of inference time, KD-XVAE demonstrates exceptional
performance, requiring only 0.3 ms per batch, measured on the
HCRL Car-Hacking dataset. This is a substantial improvement over
the 3.58 ms needed by the Time-Embedded Transformer with Au-
toencoder [15]. Such efficiency gains are critical for real-time appli-
cations, ensuring prompt detection and response to cyber threats.
Minimum cycle times for CAN messages on a 500 kBit/s bus as
used for the two datasets stand at 10 ms [24]. As a result, any la-
tency overhead caused by KD-XVAE needs to be smaller than 10
ms which also includes network latency and regular computation
time. Our numbers easily satisfy this requirement, displaying the
real-time capability of KD-XVAE.

4.6 XAI Analysis
To further understand the inner workings of KD-XVAE and ensure
transparency, we conducted an XAI analysis to identify the most
and least influential features and latent variables related to different
classes and datasets. The insights gained from this analysis are
crucial for validating model decisions and ensuring trustworthiness
in critical applications like automotive cybersecurity.

4.6.1 Latent Variables and Feature Influence in HCRL Car-Hacking
Dataset. In the HCRL Car-Hacking dataset, KD-XVAE’s latent di-
mensions are influenced by specific features as follows:

• Latent dimension 0, 11, 22: Influenced by Timestamp.
• Latent dimension 1, 12, 23: Influenced by CAN ID.
• Latent dimension 2, 13, 24: Influenced by DLC.
• Latent dimension 3-10, 14-21, 25-31: Influenced byDATA[0]
to DATA[7].
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Table 4: Performance Metrics Comparison for Different IDS Models on the HCRL Car-Hacking Dataset Across Various Attack
Types

Attack Type Model FNR (%) Recall Precision F1 Score

DoS

DCNN ResNet [29] 0.3 0.9970 0.9999 0.9985
CE ResNet [11] 0.21 0.9979 0.9997 0.9987
Rec-CNN [6] 2.0 0.9800 0.9924 0.9862
LSTM [23] 0.74 0.9926 0.9911 0.9919
CNN-LSTM [23] 0.5 0.9945 0.9994 0.9969
Transformer [23] 0 1.0 1.0 1.0
Time-Embedded Transformer [15] 0 1.0 1.0 1.0
KD-XVAE 0 1.0 1.0 1.0

Fuzzing

DCNN ResNet [29] 0.33 0.9967 0.9992 0.9979
CE ResNet [11] 0.24 0.9976 0.9997 0.9987
Rec-CNN [6] 17.0 0.8300 0.8964 0.8619
LSTM [23] 3.27 0.9673 0.9666 0.9670
CNN-LSTM [23] 0.9 0.9908 0.9991 0.9949
Transformer [23] 0.01 0.9999 0.9999 0.9999
Time-Embedded Transformer [15] 0 1.0 1.0 1.0
KD-XVAE 0 1.0 1.0 1.0

Gear Spoofing

DCNN ResNet [29] 0.2 0.9980 0.9996 0.9988
CE ResNet [11] 0.11 0.9992 0.9994 0.9997
Rec-CNN [6] 7.63 0.9237 0.824 0.8763
LSTM [23] 3.12 0.9688 0.9683 0.9685
CNN-LSTM [23] 0.78 0.9922 0.9968 0.9945
Transformer [23] 0.32 0.9968 0.9938 0.9953
Time-Embedded Transformer [15] 0 1.0 1.0 1.0
KD-XVAE 0 1.0 1.0 1.0

RPM Spoofing

DCNN ResNet [29] 0.19 0.9982 0.9995 0.9988
CE ResNet [11] 0.12 0.9994 0.9996 0.9995
Rec-CNN [6] 15.50 0.9345 0.8547 0.8923
LSTM [23] 2.50 0.9726 0.9701 0.9713
CNN-LSTM [23] 0.6 0.9912 0.9907 0.9909
Transformer [23] 0.06 0.9998 0.9998 0.9998
Time-Embedded Transformer [15] 0 1.0 1.0 1.0
KD-XVAE 0 1.0 1.0 1.0

This detailed mapping indicates that the model relies heavily on
data-related features to detect various types of attack. For exam-
ple, the perfect detection of DoS attacks can be attributed to the
influential role of CAN ID and DATA fields, which are critical in
identifying anomalies in data transmission.

4.6.2 Latent Variables and Feature Influence in CIC-IoV Dataset.
Similarly, in the CIC-IoV dataset, the influential features for the
latent dimensions are as follows:

• Latent dimension 0, 9, 18, 27: Influenced by CAN ID.
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Table 5: Performance Metrics Comparison for Different ML Models on the CIC-IoV Dataset.

Metrics Logistic Regression [22] AdaBoost [22] Deep Neural Network [22] Random Forest [22] KD-XVAE

Accuracy 0.89 0.92 0.95 0.96 1.0
Recall 0.50 0.66 0.76 0.76 1.0

Precision 0.48 0.48 0.83 0.76 1.0
F1-score 0.49 0.51 0.78 0.76 1.0

• Latent dimension 1-8, 10-17, 19-26, 28-31: Influenced by
DATA[0] to DATA[7].

Here, the importance of CAN ID and DATA fields is evident
across multiple latent dimensions, reflecting the model’s focus on
these features for accurate classification.

4.6.3 Feature Importance and Class-Specific Analysis. TheXAI anal-
ysis provides a detailed understanding of the importance of fea-
tures in different classes in the HCRL Car Hacking and the CIC-IoV
dataset.

• HCRL Car-Hacking Dataset:
– High Importance:

∗ CAN ID: Crucial for detecting DoS, Fuzzing, Gear Spoof-
ing, and RPM Spoofing attacks.

∗ DATA Fields: All data bytes (DATA[0] to DATA[7])
are highly influential in identifying DoS, Fuzzing, Gear
Spoofing, and RPM Spoofing attacks.

– Low Importance:
∗ Timestamp: Low significance in identifying attack-free
instances (only for Attack-Free class).

∗ DLC (Data Length Code): Low importance in distin-
guishing normal traffic (only for Attack-Free class).

• CIC-IoV Dataset:
– High Importance:

∗ CAN ID: Identifies the IDs involved in DoS, RPM spoof-
ing, Speed spoofing, Steering wheel spoofing, and Gas
spoofing.

∗ DATA Fields: Reflects payload patterns indicative of
DoS Attack, RPM Spoofing, Speed Spoofing, Steering
Wheel Spoofing, and Gas Spoofing attacks.

– Low Importance:
∗ Timestamp: Low significance in identifying attack-free
instances (only for Attack-Free class).

4.6.4 Comparative Analysis of Mean SHAP Value Ratio Between
Teacher and Student Models. This section provides a comparative
analysis of the mean SHAP value ratios between the teacher and stu-
dent models across different classes in both the HCRL Car-Hacking
and CIC-IoV datasets. The analysis reveals meaningful differences
in feature importance between the models for specific classes.

For the HCRL Car-Hacking dataset, the teacher model consis-
tently shows higher mean SHAP value ratios for key features such
as CAN ID and DATA fields across various attack classes. This indi-
cates that the teacher model relies more heavily on these features
to identify attacks compared to the student model.

• Class 1: DoS Attack: The teacher model places greater
importance on CAN ID and DATA fields, suggesting these

features are critical for accurate detection. For example, the
teacher model’s mean SHAP value for CAN ID is 0.35 com-
pared to the student model’s 0.28.

• Class 2: Fuzzy Attack: Higher SHAP values for CAN ID
and DATA fields in the teacher model emphasize their impor-
tance in identifying fuzzy attacks, with mean SHAP values
of 0.42 for CAN ID in the teacher model versus 0.33 in the
student model.

• Class 3: Gear Spoofing Attack: The teacher model’s higher
reliance on CAN ID (mean SHAP value of 0.38) and DATA
fields indicates these are key indicators of gear spoofing,
compared to the student model’s 0.30.

• Class 4: RPM Spoofing Attack: Higher SHAP values in
the teacher model for CAN ID (0.40) and DATA fields again
underscore their significance in detecting RPM spoofing,
compared to the student model’s 0.32.

The student model, while still relying on these features, shows a
generally lower emphasis, which may reflect that its design is more
generalized and less dependent on specific features.

In the CIC-IoV dataset, the differences between the teacher and
studentmodels aremore pronounced for certain classes, particularly
in terms of feature importance:

• Class 1: DoS Attack: The teacher model relies more on
CAN ID and DATA fields, indicating their crucial role with
mean SHAP values of 0.36 for CAN ID compared to 0.29 in
the student model.

• Class 2: RPM Spoofing: The teacher model places higher
importance on CAN ID and DATA fields than the student
model, with mean SHAP values of 0.41 for CAN ID versus
0.34 in the student model, highlighting their significance.

• Class 3: Speed Spoofing: Higher SHAP values for CAN
ID and DATA fields in the teacher model suggest these are
critical for identifying speed spoofing attacks, with mean
SHAP values of 0.39 for CAN ID in the teacher model versus
0.31 in the student model.

• Class 4: Steering Wheel Spoofing: The teacher model’s
reliance on CAN ID and DATA fields underscores their im-
portance, showing mean SHAP values of 0.40 for CAN ID
compared to 0.32 in the student model, which shows less
dependence.

• Class 5: Gas Spoofing: Similar to other classes, the teacher
model places more importance on CAN ID and DATA fields,
with mean SHAP values of 0.37 for CAN ID versus 0.30 in
the student model, indicating these features are vital for
detecting gas spoofing attacks.
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Overall, the teacher model demonstrates a more focused reliance
on specific features, especially CAN ID and DATA fields, across
both datasets, while the student model exhibits a more balanced
and generalized feature importance.

5 Discussion
5.1 Limitations
Despite the significant advancements introduced by our proposed
IDSmodel, leveraging a VAE-based knowledge distillation approach,
there are several limitations that need to be addressed. One notable
limitation is the model’s dependency on the quality and diversity
of the training data. While KD-XVAE has demonstrated robust per-
formance across various attack types on the HCRL Car-Hacking
dataset, its effectiveness in detecting novel or previously unseen at-
tack patterns remains to be fully validated. Additionally, the model’s
performance, although superior in terms of parameter efficiency
and inference time, may still encounter challenges when deployed
in environments with extreme computational constraints or in sce-
narios where real-time decision-making is crucial. The reliance on
specific features such as CAN ID and DATA fields, while beneficial
for detection accuracy, may also limit the model’s adaptability to
different types of automotive networks or configurations.

5.2 Future Work
Future work will primarily focus on addressing the aforementioned
limitations to enhance the practical applicability and robustness of
KD-XVAE. One key area of focus will be the optimization of the
model for deployment in diverse real-world scenarios, including
environments with varying computational resources and network
configurations. This will involve extensive testing and validation of
the model’s performance across different automotive platforms and
under varying operational conditions. Additionally, future research
will aim to improve the model’s ability to detect novel and evolving
cyber threats by incorporating advanced techniques for anomaly
detection and continuous learning. Enhancing the interpretability
of KD-XVAE through the integration of more sophisticated XAI
methods will also be a priority, ensuring that the decision-making
process remains transparent and trustworthy. Finally, collaborative
efforts with industry partners will be pursued to facilitate the prac-
tical deployment and real-world validation of KD-XVAE in modern
automotive systems.

6 Conclusion
Our proposed IDS model, KD-XVAE, sets a new benchmark in IVN
security by achieving state-of-the-art performance with a compact
and efficient design. The presented results underscore the signif-
icant advancements brought by KD-XVAE, particularly in terms
of model complexity and resource efficiency, which make it highly
suitable for deployment in real-world automotive environments.
The model’s reduced parameter count significantly lowers the com-
putational burden, enhancing its feasibility for vehicles with limited
processing capabilities. Moreover, KD-XVAE’s superior inference
times, averaging 0.3 ms per batch, ensure its real-time applicability,
enabling immediate detection and response to potential threats.
The consistent high performance across all tested attack types

on the HCRL Car-Hacking dataset highlights the model’s robust-
ness and adaptability, with perfect scores in Recall, Precision, and
F1 Score. Comparatively, KD-XVAE outperforms traditional ma-
chine learning models on the CICIoV2024 dataset, validating the
efficacy of advanced deep learning techniques in enhancing IVN
security. Additionally, the integration of XAI methods provides
valuable insights into the decision-making process, enhancing the
transparency and trustworthiness of KD-XVAE. Moving forward,
further optimization and real-world validation will be crucial to
ensure the model’s practical effectiveness and reliability in diverse
automotive scenarios.
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