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Abstract

This paper describes a method and framework to de-
tect manipulations in automotive control systems. As
the automotive industry is shifting towards employing
software-based solutions, the incentives for attackers to
manipulate automotive systems increase. At the bound-
ary where the cyber-physical world interface is partic-
ularly sensitive for security and safety, manipulations
in the computer system might have an uncontrollable
impact in the physical environment and could lead to
potentially dangerous situations. This paper presents a
context-aware intrusion detection system (CAID) frame-
work capable to recognize manipulations of the physical
system using cyber means. CAID uses sensor informa-
tion to establish reference models of the physical sys-
tem and then checks correctness of current sensor data
against the reference models. Thereby, it establishes the
notion of plausibility of a controller’s operation. CAID
augments today’s cyber physical intrusion detection sys-
tems (IDS) by adding a physical model to the detection
engine. The CAID framework has been evaluated in a
vehicular setup using a test vehicle. Telemetry data has
been collected from a test vehicle that has then been chip-
tuned with a commercially available chip-tuning tool to
obtain manipulated data. CAID was able to recognize the
chip tuning with a very high probability using an unsu-
pervised Artificial Neural Network (ANN). This proof-
of-concept could be the starting point to enhance cur-
rent automotive IDS using the CAID framework in or-
der to detect future automotive attacks to safety-critical
systems.

1 Introduction

The automotive industry is on the verge of transition-
ing from a mechanical to a software industry [6]. Ini-
tially, mechanical subsystems were augmented and re-
placed with electrical components to increase reliability

and to improve active safety systems. Infotainment and
connected services were added to provide comfort fea-
tures to drivers and passengers. The coming wave of new
vehicle technologies includes advanced safety functions,
automation features, and interconnection with road and
traffic infrastructures to optimize traffic flow and to en-
able cooperation between vehicles. At the same time,
technologies for vehicle customization and personaliza-
tion are gaining momentum to provide an individualized
driving experience. Software is a major innovation factor
behind these new developments emerging in the automo-
tive space [2].

This paradigm change in the automotive industry
might entail a change in current and future vehicle use
models. Traditional car ownership and maintenance are
expected to persist, but particularly in urban environ-
ments, new forms of mobility start to emerge and will
eventually prevail. The focus will shift from a vehicle-
centric ownership model towards a mobility-on-demand
and mobility-as-a-service model. Single vehicles might
be shared among many users. Vehicles will allow in-
creasing levels of customization for each user. In order
to adapt to a new user or a new service session, vehicles
must be able to quickly reconfigure their configurations.
This does not only relate to comfort features like pre-
set radio stations, setting individual dashboard layouts,
or adjusting seat position, but might extend to cyber-
physical properties that determine the vehicle dynamics.
An engine controller, for instance, could be reconfig-
ured to optimize power and maximize acceleration. This
kind of flexibility requires vehicle software to activate or
deactivate functions, and/or to configure parameters for
control loops.

The flexibility of software is a strength and weakness
at the same time. Engineers can model processes and
procedures in computer programs in a quick and cost-
efficient manner. Changing software configurations is
one of the main reasons behind software’s success story.
Updating software and distributing program code to ve-



hicles can be executed quickly at little cost, assuming
that a communication infrastructure is available. The
ease for updating software does not only allow for well
intended change, but this approach is vulnerable to unin-
tentional and malicious manipulation. The flexibility of
software can potentially be unintentionally or intention-
ally lead to vehicle damage and it might even endanger
passengers’ safety. Safety and security measures are put
in place to limit the possible executions of a computer
program to a range of safe states. In systems that inter-
act with the physical environment safety and security are
crucial, because manipulating their behavior might have
a negative impact on physical systems. Security mech-
anisms of automotive computer systems should there-
fore prioritize mitigation against cyber-physical attacks
and limit the impact of such attacks in case of a security
breach.

This paper presents the Context-aware Intrusion De-
tection (CAID) framework. CAID is specifically targeted
at protecting automotive control systems. It taps into var-
ious control systems of the vehicle and monitors the state
of the controllers by checking their input/output behav-
ior. By capturing benign execution traces in a reference
model [30], CAID is capable of recognizing malign ex-
ecutions. CAID is generic and makes no assumptions
on the implementation of a controller. It is adaptive and
leverages a learning system to integrate new informa-
tion. CAID is non-intrusive and monitors on-board vehi-
cle communication passively. It can easily be integrated
in automotive firewalls/filters, e.g. Controller Area Net-
work (CAN) gateways to discard detected malicious on-
board communication messages and prevent attacks, or
to relay detected anomalies to remote forensics services
that analyze the detected anomalies in a central server.
While there are already automotive Intrusion Detection
Systems (IDSs) available today, none of them leverages
physical models in the way CAID does. We expect that
CAID will be part of all future automotive IDSs in order
to stay competitive with advanced attacker strategies.

The paper is organized as follows: Section 2 de-
fines the scope of an automotive intrusion detection sys-
tem and potential threats to automotive control systems.
Section 3 contains a technical description of the CAID
framework. The case study in Section 4 uses chip-tuning
as an attack vector and elaborates how CAID recognizes
this attack. Section 6 discusses the results and limita-
tions, and Section 7 concludes this work.

2 Automotive Systems and Threats

Several research teams have demonstrated impressively
during the last years that it is possible to compromise
automotive systems [15, 16, 13, 7, 10]. Attacks using
each available interface have been shown, such as the

On-board Diagnostics II (OBD-II) port, USB, CD/DVD,
Bluetooth, and cellular connections. It is widely agreed
that a defense-in-depth approach is required to protect
vehicles. While hardening all interfaces is a good start-
ing point, further security mechanisms are required in a
vehicle. A major aspect is a secure software develop-
ment process. This is out of scope of this paper, and the
interested reader is referred to SAE J3061 [20]. There is
a wide body available of further research about automo-
tive threats and countermeasures, e.g. [24] and [28].

2.1 Automotive Process Control

The automotive context includes all processes related to
a vehicle’s main objective of moving people and goods
in a safe, secure, and efficient manner. Many of these
processes are part of automatic control systems, i.e., sys-
tems that manage, command, direct, or regulate the be-
havior of processes according to a control law. Control
systems are the heart and soul of almost all major auto-
motive subsystems such as engine, power-train, battery
management, electrical system, steering, etc. They pro-
vide the intelligence to take timely decisions and actions
in the vehicle. Table 1 summarizes some of these sys-
tems.

Control systems and processes collaborate to achieve
the overall control objective. For that purpose, con-
trol loops can be layered or nested. A supervisory con-
trol mechanism might provide input to several low level
controllers. For example, in a Hybrid Electrical Vehi-
cle (HEV) architecture, a hybrid controller regulates the
power that flows from electric motor and combustion en-
gine to the transmission. Each motor has its own con-
troller that deals with the propulsion specific variables.

The rate of change of a process is another important
aspect for a controller. Certain process variables in an
engine will change faster than others. This translates
into different execution times for a control cycle. For in-
stance, the spark advance control governs the firing of the
spark plugs in a combustion engine. Timing is critical as
it has a major impact on efficiency of the combustion, its
emissions, and ultimately on driveability. A sensor will
report the position of the piston to the electronic control
unit (Electronic Control Unit (ECU)) that computes the
optimal timing for the spark event. Depending on RPM
and type of engine, the spark plugs are activated every
10 to 16 ms. The fuel injector regulates the air/fuel mix-
ture and requires feedback about the composition of the
exhaust fumes. This control process is slower than the
spark advance control.

Nowadays, a control law will be implemented in a dig-
ital process controller. Typically, control engineers de-
vise the control algorithm and its parameters in a model-
based design environment. The parameters are usually
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Table 1: Examples of automotive, closed-loop control systems
Control System Indirectly con-

trolled variable
Directly con-
trolled variable

Manipulated
variable

Sensor Actuator

Fuel injection
system

Air-fuel ratio Exhaust oxygen
content

Quality of injec-
tion fuel

Zirconia or Tita-
nia based elec-
trochemical

Fuel injector

Knock control Knock Knock sensor
output

Ignition timing Piezo-electric
accelerometer

Ignition coil
switch. Transis-
tor

Anti-lock brak-
ing system

Wheelslip limit Wheelspeed Brake time pres-
sure

Magnetic reluc-
tance

ABS solenoid
valve

Spark advance
control

Efficiency,
driveability,
emissions

Ingition timing Spark plug

kept in a large number of look-up tables. The algo-
rithm is then split in functions and tasks that form the
logical system view. In the next step, the functions are
mapped to the vehicle’s electrical and electronics (E/E)
architecture consisting of networked micro-controllers in
an ECUs. A typical automotive E/E architecture will
use a serial bus, e.g., Controller Area Network (CAN)
or FlexRay as a network. Finally, binary images encom-
passing code and parameters are created and flashed onto
the ECUs. This work assumes that the automotive pro-
cess control system is the point of attack.

Securing control systems against attacks is an active
research area (e.g., [4]). This work focuses on recogni-
tion of attacks after the fact.

2.2 Secure Vehicle Architecture

An abstract modern vehicle electronics architecture is
displayed in Figure 1. Current efforts to secure vehi-
cles are ECU-based security mechanisms such as secure
boot, secure on-board communication protocols, access
control, and IDS.

An essential aspect of a secure vehicle is the separa-
tion of network segments, connected by gateways. Ide-
ally, there is a Central Gateway (CGW) that separates the
infotainment and telematics unit, the OBD-II port, and
further wireless interfaces, from all safety-critical sys-
tems like the power-train bus. The CGW is then able
to route and filter all on-board messages using a rout-
ing table or a white-list. The white-list defines the mes-
sages that are allowed to pass from a defined origin port
to a defined destination port. For instance, a white-list
implemented in a CGW could define that a message to
display information about the current radio station in the
vehicle’s dash board is allowed to pass, but a diagnos-
tics message to manipulate the brakes is not allowed to
pass from the infotainment network segment to another

Figure 1: Central gateway deploying CAID Framework

segment. Experts believe that such a CGW filter would
have avoided that any of the attacks reported in the last
years would have advanced beyond the infotainment and
telematics systems, and none of those successful remote
attacks would have had any impact to the vehicle’s phys-
ical driving behavior.

2.3 IDS and Filter

IDS are deployed in vehicles to monitor the in-vehicle
communication bus and to detect anomalous on-board
communication messages. While there is no clear ter-
minology in the automotive domain, we define IDS as a
system that monitors the on-board communication to de-
tect anomalous messages using heuristic methods (e.g.
see [3]). We define a filter as a module that is located be-
tween two networks, that analyzes on-board messages,
and forwards or discards them based on a white-list.
CGWs usually implement a filter. Furthermore, it is
possible to introduce filters between exposed interfaces
and the on-board communication bus, e.g. between Tire
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Pressure Monitoring System (TPMS) and CAN. Note
that implementations usually use combinations and defi-
nitions slightly overlap, e.g., white-list based CGWs use
basic heuristics to measure typical message frequency,
and heuristics-based IDS use white-lists to discard obvi-
ously malicious messages in order to reduce the amount
of computations. It is a common approach to integrate
IDS in a CGW to utilize both white-list and heuristics in
the decision process of relaying or discarding messages.
Note that it is also possible to corrupt a CAN message
while it is transmitted, e.g. by corrupting the check-sum
in real-time, for instance, as described in [26]. Filters
effectively raise the threshold for attacks to propagate to
safety-critical systems.

Today a wide variety of automotive IDS are available
and research has been performed in the last decade [5],
[12], [17], [30]. Several commercial products are avail-
able, and those products use combinations of machine
learning, white-listing, and heuristics.

2.4 Close the circle: IDS, Forensics, SOTA
A proper future vision to prevent attacks is to use filters
and IDS to detect on-going attacks (see Figure 1). While
the filter prevents that an on-going attack can advance to
a critical system, the IDS detects the attacks to the non-
critical system (e.g. on an infotainment system). The
IDS then reports the attack to a central service such as a
cloud, e.g., via telematics or during the next maintenance
service. The central service runs forensics on the data
reported by several vehicles and the reports are leveraged
to fix software vulnerabilities. A Software over-the-Air
(SOTA) mechanism is then used to update software in
vehicles and remove vulnerabilities. This cycle will be
used to gradually improve cybersecurity of vehicles in
the field.

This paper aims to extend the detection of attacks to
the critical system domain.

2.5 Cyber-Physical Attacks
Automotive systems are Cyber-Physical System (CPS).
CPS are integrations of computation, networking, and
physical processes. Embedded computers and networks
monitor and control the physical processes, with feed-
back loops where physical processes affect computations
and vice versa [14]. Cyber-physical attacks target this in-
tegration, thus, attacks in cyberspace impact the physical
environment and changes of the physical parameters im-
pact the embedded system.

Common CPS defense mechanisms focus on cyber
properties for example by protecting the network com-
munication against replay or injection attacks. Whereas
countermeasures against this kind of attacks are currently

being realized, not all attack vectors are covered. Attack-
ers who exploit the semantics of messages can remain
undetected, because only cyber properties are checked.
The integrity of the communication pattern does not
change, but the actions that follow from the communi-
cation. For instance, in a control system, an unintended
control action might result from a deliberately tampered
sensor input.

As a result, a future IDS for CPS also has to involve
the physical part of a system by, for example, analyz-
ing and interpreting the payload of messages. Current
approaches in the automotive domain only check if the
CAN payload is within the allowed range for the physi-
cal quantity. It is, however, not sufficient to only analyze
the range of values in the message payload to detect at-
tackers deliberately manipulating physical variables.

Restricting physical variables to a certain range does
not prevent attacks since the current value of a physical
variable depends on many factors, including context and
correlation. Preceding and succeeding messages are de-
cisive to monitor the change of a physical variable and
therefore to analyze the semantics correctly. Working to-
wards a a fully semantic-based analysis, the proposed so-
lution overcomes this problem by using a behavior-based
approach. The idea is to compare the actual behavior to a
reference model that is unique for every control system.
This approach extends from syntax to semantics and thus
enables reliable misbehavior detection in the physical do-
main.

2.6 Automotive IDS

Today’s automotive IDS are mainly leveraging cyber pa-
rameters of the on-board communication bus messages,
such as CAN message frequencies and entropy. They
combine data from several CAN lines, check payload
content to a certain degree (e.g. check for range), and
work fairly reliable. However, IDS are based on statisti-
cal methods which means that there will always be false
alarms and also missed attacks.

This work refines current IDS approaches by integrat-
ing a physical model of the vehicle to establish a context-
awareness in the IDS. The proposed approach is driver-
independent and only focuses on physical parameters
which can be obtained by the existing sensors in the ve-
hicle. It can be used to increase the precision of current
automotive IDS and to detect software modifications that
have a physical impact. A proof-of-concept is made with
respect to chip tuning, a modification of the engine con-
trol unit that has a physical impact. The approach can
be refined to establish a physical model of other vehicle
aspects, such as manipulation of brakes or manipulation
of emissions control, hence allowing a comprehensive
detection of any software manipulation that leads to a
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Figure 2: Possible configuration for a recognition unit
using the IDS Framework

change of the vehicle’s behavior and of the control mech-
anism.

First similar approaches have been made in [27] and
[30]. This work extends these approaches from simula-
tion to implementation and operation in a real vehicle. It
is the first research to leverage machine learning to devise
physical models that are capable to detect attacks in a ve-
hicle’s control system in an efficient and comprehensive
manner. As a result, this work introduces a framework
for cyber-physical IDSs called CAID.

3 Context-aware Intrusion Detection
(CAID)

CAID is designed to perform intrusion detection in an
automotive environment. Its innovation is to detect de-
viations of the physical processes from the nominal be-
havior in the automotive system. This is achieved by
monitoring streams of sensor and actuator values flowing
between the ECUss. CAID is context-aware and lever-
ages physical indicators such as speed, acceleration, and
torque. Conventional computer network IDSs monitor
indicators such as CPU load, memory consumption and
network activity. CAID complements traditional IDSs to
leverage the features and satisfy the requirements of a
cyber-physical system.

3.1 General Overview
The CAID framework consists of three general mod-
ules that are integrated to pursue one or several detec-
tion goals. They communicate with each other through
events.

• Monitors read and aggregate information. A Mon-
itor reads raw automotive on-board communication
data streams, extracts and processes features, and
produces events. Events are deviations, anomalies,
or outliers being detected. A Monitor functions sim-
ilar to a filter, but does not discard messages.

• Detectors perform analysis and determine if an
anomaly occurred. The Detector fuses event in-
formation from Monitors with high-level operating
conditions that impact the interpretation of events.
For instance, the car’s current gear position might
impact the interpretation of an event. Each single
Detector has a well-defined detection goal.

• Reporters interface with the user. These modules
communicate or store the result of the recognition
process. ’User’ is defined broadly and can be any
party involved in the vehicle’s life cycle such as
car owner, manufacturer, maintenance engineer or
a processing system.

Figure 2 depicts the relationship between instances of
Monitors, Detectors, and Reporters. All three modules
are related in N-to-M relations. A Recognition Unit (RU)
refers to an instance of the CAID and it is a configura-
tion of the three module types to target a single recogni-
tion goal. For instance, several monitors can connect to
one detector which is in turn connected to one or more
reporters. Thus, a Detector is at the core of an RU.
Monitors, Detectors, and Reporters can be used multiple
times in different RUs. For example, a Monitor report-
ing anomalies of the engine control unit could be addi-
tionally used in RUs to recognize other attacks, such as
recognizing chip-tuning as well as power-boxing attacks.
The three modules can be implemented in a single unit
or in a distributed fashion.

An RU must be confined inside the same security
perimeter. A security perimeter provides a Trusted Com-
puting Base (TCB) and segregates a secure partition in
the system. There is a trade-off when implementing an
RU in a single unit or as a distributed system. If the
three modules’ instances are hosted in a single unit, the
perimeter can be enabled by the physical boundaries of
the unit or by a virtualization thereof. This design pro-
vides an easy way of establishing the security perimeter,
however, at the cost of availability since this design intro-
duces a single point of failure. Distributing the instances
increases availability, but setting up a security perimeter
is more challenging. Current efforts aim to secure the on-
board communication in automotive networks to provide
authenticity guarantees on the messages. Having authen-
tic information is paramount for the RU. A good example
is an IDS that is integrated in a vehicle gateway. Even if
the Detector is able to successfully detect an attack, it
might not be able to report that attack to server since the
Reporter is embedded in the infotainment/telematics unit
that has been compromised in the first place.

This general system model is capable to describe most
currently used IDSs. Partitioning an IDS in this manner
contributes to facilitate the integration of the CAID with
a general intrusion detection strategy and into a larger
automotive software stack like, for instance Automotive
Open System Architecture (AUTOSAR) [21].

3.2 Data Collection
Monitors read input data of system information such as
CPU load, temperature or resource consumption pro-
vided by the underlying OS in a traditional IDS. CAID
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Figure 3: Recognition Unit (RU) data flow example

leverages remote sensor (telemetry) data to build a ref-
erence model, as depicted in Figure 3. This data is col-
lected from a set of ECUs of the vehicle. These devices
are usually interconnected with each other by an on-
board communication bus, or In-vehicle Network (IVN).
Although E/E architectures differ between cars, an IVN
usually consists of multiple bus systems using different
protocols and physical layers which all converge in a
node. This node is called CGW and can be regarded as a
router between the different bus segments. Bus systems
are segmented with ECUs according to the ECU’s pur-
pose, mostly due to timing constraints. The most com-
mon bus found in vehicles is CAN. For instance, ECUs
for engine, transmission and braking functions are lo-
cated on the power-train CAN. Other commonly used
CAN bus lines are the Comfort CAN, Body CAN, and
Infotainment CAN.

We set up our monitors of the CAID to collect data
from the on-board diagnostics (OBD-II) interface. This
connector is mandatory for all vehicles sold in the US
since 1996, and it is used for emissions measurements
and diagnostic features. Although it was originally de-
signed for emission-relevant information only, it now
often provides extensive engine control, chassis, body,
and comfort function diagnostic information. A Monitor
can be easily connected to the OBD-II port of the vehi-
cle and information about several standardized parameter
ID (PID) called OBD Parameter IDs (OBD-II PIDs) [31]
can be obtained without prior knowledge of the vehicle
architecture or its message format.

The procedure for obtaining information about
OBD-II PIDs is similar to a publish-subscribe mecha-
nism. Depending on the sampling frequency constraints
of the interface, the monitor entity can subscribe to the
relevant ECUs by sending periodical requests for its de-
sired set of OBD-II PIDs. The respective ECUs will then
respond within a certain time. The obtained data can then
be processed to build a reference model or inside the de-
tection module.

3.3 Detection Module
A detection algorithm in CAID encompasses a reference
model that summarizes the typical behavior of the mon-
itored control system. During operation, data is used to

verify whether the actual behavior lies within the ’nor-
mal’ behavior pattern. Thus, the detection algorithm per-
forms a plausibility check using the reference model. The
reference model implements the first level of context to
interpret the incoming data. It is dedicated to capture the
dynamics of the control system. The complexity of the
reference model can vary greatly. It can be as simple as
a look-up table [27] or as complex as a Neural Network
[30]. It might integrate new data during operation or it
can remain static. There are several ways to devise a ref-
erence model:

Handcraft A developer can implement a model that is
specifically designed to recognize a particular ma-
nipulation.

Generate In the automotive domain, controllers are usu-
ally developed using a model-based design [25] ap-
proach. In model-based design, models are used at
all stages during the design for validation and veri-
fication. Some models can be used to actually gen-
erate code that implements the controller. The very
same models could be re-purposed to generate as
reference models.

Learn Operational data can be used to build a variety
of machine learning models to capture typical be-
havior. Data-driven modeling and deriving mod-
els from data has gained some attention recently
[29]. There are many appropriate modeling formal-
ism that are able to abstract the data. For our case
study we leverage artificial neural networks (Artifi-
cial Neural Network (ANN)). The data-driven ap-
proach for building the reference model has also the
advantage that these models are usually adaptive,
thus, they can be updated during operation to inte-
grate slight changes such as wear-out of the engine
in the reference model.

The reference model will generate events if the ac-
tual behavior and the reference behavior differ, thus in-
dicating a potential intrusion. Anomaly detection algo-
rithms [5] are a useful class of algorithms to build adap-
tive reference models. Reference models, however, are
not restricted to these and could also utilize other types
of physical models such as Linear time-invariant (LTI)
and differential equations.

3.4 Intrusion Recognition
The events generated by the reference model in the Mon-
itors are aggregated with other relevant information in
the Detector module. A Detector implements the second
level of context. It complements the first level of context
that is dedicated to the dynamics of the control system
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with global information on operational states. For exam-
ple, the interpretation of engine events recognized by a
Monitor might be different if the car is idling or if it is
driving on a highway. Moreover, a Detector can aggre-
gate information from different sources.

A Detector can be implemented using state machines
and decision trees. Decision trees are an effective way of
matching a series of conditions. According to the con-
text, a subset of the reference model can be extracted and
used for the plausibility check in order to increase the
efficiency of the Detector.

3.5 Reporting
Reporting includes the actual reporting of the event to a
party, and the reaction. Both aspects are open challenges
today. First, it is unclear what data about the event is
actually reported. More information will enable better
forensics at the cost of additional cost to transmit the
data. Second, it is unclear how to react to the event.
It is widely agreed today that there will be no real-time
reaction/prevention but that the data will first be further
analyzed by a server. It appears reasonable that the foren-
sics process is executed by the vehicle manufacturer. The
manufacturer then informs the current vehicle owner or
driver about a potential manipulation, attack, or anomaly.
The manufacturer will also use the results to fix security
vulnerabilities and, if available, distribute the fixed soft-
ware via SOTA updates.

4 Recognizing Chip Tuning

As a proof-of-concept for a CAID, an IDS implementa-
tion to recognize chip tuning has been developed. The
RU for chip tuning (RUfCT) uses the IDS framework de-
scribed in section 3. A test vehicle has been chip tuned
using a commercially available, off-the-shelf chip tun-
ing tool. The car’s telemetry data is recorded using the
OBD-II interface. A standalone ECU implements the
Monitors, Detectors, and Reporters required for RUfCT.
This case study demonstrates the feasibility of the CAID
framework as well as its capability to detect manipula-
tions in the physical domain.

4.1 Manipulating Engine Control
Tools to manipulate an engine’s control are widely avail-
able and are relatively easy to use. The common goal of
such tools is to increase horse powers or to improve fuel
efficiency.

The ECU uses a formula and a number of look-up ta-
bles to determine the control actions for given operat-
ing conditions. A tuned ECUs may, for instance, supply
more fuel at full throttle. It may also change the spark

timing. Such manipulation can be realized in at least the
following ways:

• Chip tuning aims to modify the control algorithm
parameters in the ECU. These parameters are usu-
ally stored in a persistent memory in the ECU’s
micro controller as a look-up table. The attacker
changes the behavior of the controller by overwrit-
ing the parameters in the look-up tables with new
values. Memory access might be protected, but
research shows that many of the flash protection
mechanisms implemented in common micro con-
trollers are not adequate [22].

• Power boxing intercepts and modifies control mes-
sages between ECU and actuator. The power box is
installed on a CAN line, for example between the
ECU and the fuel injector. Incoming messages are
relayed or modified, effectively changing the con-
trol parameters and thereby the behavior of the con-
trol loop. Installing a power box is easy and usually
as simple as disconnecting and reconnecting a few
electric cables.

Manipulations of the engine controller raises a num-
ber of concerns. Besides the desired, benign effect, neg-
ative effects might occur and damage the engine. More-
over, dependencies between control systems might be
disturbed and side effects could occur.

Detecting manipulation is valuable for several stake-
holders in the automotive environment. The manufac-
turer can void the warranty in case of illegal manipula-
tion, the insurance company can adjust the driver’s insur-
ance policy and authorities could change the registration
information for the vehicle. The car owner can be in-
formed, in case the manipulation was not made with her
approval.

4.2 Building an Engine Control Reference
Model

There are several ways to establish a reference model to
capture the specified behavior of the engine control unit.
The approach followed in this case study uses telemetry
data and leverages machine learning to build a reference
model (see Section 3.3 for other options).

4.2.1 Engine Telemetry Data

The set of data points determines the first level of context
and it is defined by subject matter experts. The authors
selected a set of relevant data points (see Table 2) for the
engine control case study. This data is obtained from the
vehicle via its OBD-II interface. Each data point has to
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Table 2: Data points and their respective entropy in the
case study

Data point Units Entropy
Vehicle speed MPH 7.91
Calculated load value percent 8.10
Engine RPM RPM 8.13
Absolute throttle position percent 8.17
Fuel rate gal/hr 7.91
O2 sensor lambda wide range 8.18
Fuel/Air commanded equivalence ratio 8.16
Absolute throttle position B percent 8.19
Accelerator pedal position D percent 8.22
Catalyst temperature F 8.19

be queried individually via the chip’s request/reply pro-
tocol. Using direct access to the CAN bus could increase
the sampling frequency for the data points, but requires
knowledge of the CAN ID numbers of the individual
messages. This is proprietary information that was not
available to the authors, so standard OBD-II PIDs were
used.

4.2.2 Feature Extraction

The raw data collected from the telemetry unit of the
vehicle is processed to generate a feature vector X =
{xmean, xvar, xstd , xskewness, xkurtosis}. The time
series data is segregated in intervals using a a sliding
window technique. Therefore, a window W has n ele-
ments t such that W = {ti|i = 1 . . .n}. In the case study
an interval has the duration of 2s and a period of 1s.
Each interval is mapped to a feature vector consisting of
five statistical moments and the first m real-valued coeffi-
cients of a power spectrum. The statistical moments used
are mean (Eq. 1), variance (Eq. 2), standard deviation
(Eq. 3), skewness (Eq. 4), and kurtosis (Eq. 5) as sug-
gested in [18]. The power spectrum is computed using
fast Fourier transform (Fast Fourier Transform (FFT)).

xmean = µ =
1
n

n

∑
i=1

ti (1)

xvar = σ =
1
n

n

∑
i=1

(ti−µ)2 (2)

xstd =

√
1
n

n

∑
i=1

(ti−µ)2 (3)

xskewness =
1
n ∑

n
i=1(ti−µ)3

σ3 (4)

xkurtosis =
1
n ∑

n
i=1(ti−µ)4

σ4 (5)

Figure 4: Architecture of a Bottleneck ANN

After generation, the features were normalized using
Gaussian normalization (Eq. 6). This is not strictly re-
quired, but recommended practice for neural networks.

xnorm =
xi−µ

σ
∀xi ∈ X , i = 1..k (6)

The case study made use of Matlab’s mean, var, std,
skewness, and kurtosis functions from the Statistics
toolbox.

4.2.3 Bottleneck Artificial Neural Network (ANN)

Figure 4 depicts the general architecture of a Bottle-
neck ANN that is a special variant of ANNs suitable
for anomaly detection [5]. In a Bottleneck ANN1 the
number k of neurons in the output layer Y is same as
the dimension of input vectors X and the hidden layer Z
utilizes significantly less neurons m (i.e., k > m). They
have been successfully used for image compression [11],
dimensionality reduction [19], etc. The case study em-
ploys as transfer function for each hidden layer neuron
a sigmoid function and the linear function for the output
neurons.

During training the same feature vector is used for in-
put and output. The hidden layer then generalizes the
ratio between features. Thus, the ANN stores the typical
behavior of an engine. Training has been performed us-
ing Levenberg-Marquardt back-propagation by virtue of
MATLAB’s trainlm function.

During operation, the bottleneck ANN checks how
well it can reconstruct an input or how similar the given
input is to the ones stored in the hidden layer. This sim-
ilarity is captured as a real valued anomaly score and
computed as the error between input and output. The
case study uses a mean square error. Note that all inputs
are normalized, thus, each one contributes to the same
extent to the mean.

score =
k

∑
i=1

(xi− predict(xi))
2 (7)
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Figure 5: Exemplary manipulation detector data flow

The advantage of a learning approach is that the ANN
is able to recognize any deviation from the specified be-
havior. This is particularly important in the intrusion
detection setting, since new attacks are hard to antici-
pate. A drawback here is that the training data set has
to completely cover the specified behavior. Certain data
instances might be hard to obtain. A mitigation strategy
is to aggregate data from similar vehicles to complete the
training data set.

4.2.4 Manipulation detector

The task of the manipulation detector is to integrate
first and second level context. It fuses the results from
the ANN with environmental information and the oper-
ational modes of the vehicle. Figure 5 depicts a model
for a manipulation detector. The carIsMoving block
checks, if the car is in motion. The MovingAverage

block filters the anomaly scores from the Detector and
the AnomalyScoreThreshold block checks against a
threshold value that has been selected to be 107 for the
ANN with 43 hidden units. If both conditions hold, a
manipulation is reported.

5 Experimental Setup

For the experiments, a 2015 passenger vehicle was used.
In the first part of this setup description, the used hard-
ware is presented. Next, the tracks for collecting the data
and the selection of the OBD-II PIDs are discussed. Two
datasets were collected, one to represent original behav-
ior and one for modified behavior. During the experi-
ments with the vehicle, an OBD-II scan tool and a pro-
prietary off-the-shelf chip tuning device were deployed.
The logging of OBD-II PIDs was conducted by plug-
ging the OBD-II scan tool OBDLink MX Bluetooth to
the OBD-II port of the vehicle. The OBDLink MX uses a
STN1110 micro-controller [23] to serialize OBD-II com-
munication. Once connected to an Android device or the
PC via Bluetooth, it was able to transmit a maximum of
100 PIDs/second. The Android app for this tool was able
to log user-defined PIDs with any sampling rate and save
it as an csv file. The chip tuning has been realized with

the SKL Motorworks Performance Chip KL-PRO1 that
sends a continuous signal to the factory Electronic Con-
trol Module (ECM) to reprogram itself for a more opti-
mum fuel mixture and timing curve. According to the
vendor, this chip tuner increases the power and torque by
up to 20%.

A standard driving pattern was defined to simulate a
generic usage pattern and to cover common traffic sce-
narios. The standardized drive includes highway and
urban roads as well as driving during rush hour traffic
jams. For both unmodified and modified configurations
of the vehicle, three different drivers were dispatched,
each with the standardized driving routine in order to
eliminate driver-specific influences. It should be noted
that all three drivers were driving naturally to represent
the average driver.

To demonstrate a proof-of-concept, the detection ap-
proach was fully implemented on MATLAB 2015a us-
ing the statistics and neural network toolboxes. Pandas
0.17.1 has been used for preprocessing the raw data like
unifying time stamps and selecting columns. To simu-
late a potential implementation as on an ECU, the Rene-
sas YRDKRX63N Demonstration Kit using the Micrium
uC/OS-III that is part of the Basic Software Modules
(BSWs) in the AUTOSAR architecture was used. This
powerful microcontroller has a CAN interface and sup-
ports Digital Signal Processor (DSP) instructions which
are beneficial for the signal pre-processing done during
the feature extraction. Furthermore, it has wireless con-
nections such as WiFi and Bluetooth.

5.1 Data exploration

The feature extraction process described is Section 4.2.2
was applied to the data collected from the vehicle and
results in a feature vector of 54 elements.

Figure 6 depicts the spread of the data points, after the
raw data has been normalized using Gaussian normaliza-
tion (Eq. 6). Each point on the X-axis relates to a data
point and contains two bars: a blue one for the original
version of the data and an orange bar for the modified
data. The height of the bars are the maximum minus the
minimum value in the entire data-set collected. The blue
and orange line plots over the bars show the median val-
ues to indicate the distribution of a data point’s values.
The figure shows that most of the medians are close to
the minimum, thus, the entities are very stable and have
just slight variations. The peaks indicate that there are
some outliers present. Basically, an ANN can deal with
outliers to a certain degree, since the weights of the neu-
rons can amplify and smoothen out.

The scatter-plot matrix in Figure 7 depicts the pairwise
relationships between the selected data points (see 4.2.1).
The figure shows a subset of the input feature vector, the

9



Data points
0 5 10 15 20 25 30 35 40 45 50 55

M
in

/m
ax

 v
al

ue
s

0

5

10

15

20

25

30

35

40

45

original

modified

Figure 6: Variation in the feature vector
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Figure 7: Pairwise relationships between data points

fourth statistical moment has been selected. For instance,
it reveals that Engine RPM and Fuel rate in scatter-plot
(5,3) are strongly correlated. Other data points do not
correlate well, e.g., Catalyst temperature and Accelera-
tor pedal position at (10,9). Correlation between data
points is due to coupling in the physical environment.

For instance, if the Engine RPM increase, more fuel gets
burned. The catalyst subsystem works independently
from the engine.

The ANN stores the relation between data points and
fires an alert, if this relation does not hold for a particu-
lar instance of a feature vector. That goal requires cor-
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Figure 8: Resulting anomaly scores w.r.t. training set,
validation set, modified set 1, and modified set 2

related as well as independent data points. Single data
points can serve as indicators that a relation has been vi-
olated. Combinations of data points can signify through
changes in their degree of correlation that something is
odd. Taken together as inputs to a ANN they form an
indicator, i.e., the ANN’s anomaly score.

5.2 Results
Three different ANN architectures with 16, 32, and 43
hidden neurons were trained for comparison.

Figure 8 depicts the ANN at work: the topmost chart
displays the individual anomaly scores for the series of
feature vectors used for training. The average score is
around 9.72e+ 03. The upper middle chart shows the
same for the validation data set, averaging at 4.08e+06.
The lower middle chart exemplifies that the scores of a
modified vehicle (mean at 3.16e+ 07) are substantially
higher than those of the other two sets. Finally, the bot-
tom chart uses feature vectors from the modified set as
well, but only a small number. The mean score for this
trace (3.25e+02) stays below the those of the other sets.
This indicates two circumstances:

(a) This short period of observation did not reveal any
manipulation, thus the vehicle operated in the speci-
fied state space despite the manipulation.

(b) A certain number of anomalous feature vectors has
to be recognized, before forwarding an alert. How

many such feature vectors should be collected is de-
scribed next.

The left hand side of Figure 9 visualizes that the ANN
actually can distinguish behaviors. It shows the anomaly
score of the validation data set versus the score of the
modified data set for the three ANN architectures. The
validation data set is considered to be equal to data ob-
tained from original operation. Each architecture pro-
duces scores in a specific band of the logscale chart.
After some instances have been evaluated through the
ANN, the anomaly score of the modified set remains con-
sistently above the score of the validation set. Therefore,
we conclude that the ANN is capable of distinguishing
between specified and modified behaviors.

The curves were obtained by sweeping through sub-
sets of the modified dataset:

1. Randomly select a subset of feature vector instances
from the modified dataset

2. Compute the mean of the resulting anomaly scores
for the subset

3. Increase the size of the subset, iterate

The resulting trace was smoothened using a moving
average filter (t = 10). The experiment was repeated for
k = 12 times and the curves for each ANN architecture
were averaged and then displayed.

The bar diagram on the right side of Figure 9 shows
the quality of the recognition. The ANN with 43 hidden
nodes performs best, the average anomaly score for the
modified data-set is 6− 8 times higher than that of the
original dataset. The ANN employing 32 hidden nodes
has a 4− 5 times higher score and the architecture with
16 nodes was about 1.5 times above.

5.3 Implementing the Recognition Unit
As described in Figure 3 and Section 3.1, the CAID
framework consists of three general modules which can
be regarded as atomic Software Components (SWCs) in
the AUTOSAR architecture. Each AUTOSAR SWC en-
capsulates part of the functionality of the application and
can be implemented on its own dedicated ECU. It is also
possible that all SWCs share one physical ECU as in our
case. SWCs communicate between each other for ex-
changing data over the Virtual Function Bus (VFB). The
VFB is the sum of all communication mechanisms pro-
vided by AUTOSAR on an abstract, target-independent
level. During development, the SWCs with their com-
munication interfaces are mapped to the specific tar-
get by using the configured BSW. A BSW provides
the infrastructure for execution on an ECU and has to
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Figure 9: Ratio between anomaly score between validation set and modified set over time for different Bottleneck
ANN architectures

be configured according to the specific target architec-
ture. The BSW includes several automotive communica-
tion services like CAN or Ethernet, as well as the Run-
time Environment (RTE) (i.e., Operating System (OS))
and memory services. The logical architecture of the
RU is mapped to the physical hardware by the Micro-
controller Abstraction Layer (MCAL) which provides
target-specific drivers and pin-maps.

Figure 10 depicts a possible implementation using
three ECUs, each one containing the SWC for one com-
ponent of the RU. The RTE is specifically configured to
connect the SWC with its necessary BSWs and imple-
ments the VFB functionality on a specific ECU. These
ECUs are part of the Diagnostic CAN bus which con-
nects the OBD-II port with the CGW. As we do not
have direct access to the CAN lines of the vehicle, we
plugged the ECU running the RU directly to the OBD-II
port which is connected to the Diagnostic CAN bus.

The tasks of the SWCs can be summarized as follows:

• Monitor: The monitor sends periodic OBD-II PID
requests to obtain the necessary parameters from
the ECUs. The payloads of the PID responses are
processed by calculating the absolute value of the
PID according to the instructions described in [31].
These values are then stored in the internal memory
of the ECU for further processing.

• Detector: The ANN algorithm running within this
SWC checks the plausibility of a sequence of data
obtained from the Monitor. The weights of the
ANN have been hardcoded in the ECU. Their val-
ues have been determined previously, by offline
training in MATLAB. If a manipulation is detected,
an interrupt flag is set.

Figure 10: Example approach of RU implementation on
one ECU

• Reporter: Eventually, this module uses the defined
interrupt to perform its routine.

6 Discussion

The results presented in section 5.2 are very promising.
They show that our approach was able to recognize the
manipulated engine controller in our test vehicle with a
high probability. The data, however, was collected in a
well-defined environment on urban and highway roads
and drivers were driving cautiously. Some circumstances
could not be addressed with the data at hand and some
challenges remain open:

• Road conditions: The impact of road conditions on
the recognition is not yet clear. Driving on slippery
roads or surfaces with differing degrees of grip has
an impact on the engine control. For instance, if the
traction control detects a wheel slip, it intervenes in
the engine management system to counter this ef-
fect by throttling back engine power. This kind of
behavior has to be included in the training set.
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• Changing drivers: Each person has his or her
unique personal style when driving a vehicle. It has
been shown that recorded vehicle data is sufficient
to distinguish between different drivers [8]. Particu-
larly the temporal patterns of events such as braking
helps to discriminate drivers. The impact of differ-
ent drivers on the recognition is most likely low, be-
cause of the windowing technique used: Window
sizes are quite long, so the impact when an event
occurs is mitigated.

• Different devices/cars: So far, we have used one test
vehicle and one particular tuning device. It would
be interesting to see how different devices are rec-
ognized and, maybe, if they can be distinguished.
Additionally, comparing the results between differ-
ent cars is future work.

• Vehicle aging and continued model training: Our
tests were performed over a few months, during
which the test vehicle aged only insignificantly. It
can be expected that the engine controller features
change with increasing age. To avoid false alarms,
a proper model needs to include aging and possibly
refine the model by continuous training. It is un-
clear though how to perform such continuous train-
ing without opening the system to attacks that ma-
nipulate the engine slowly over time.

• Maintenance and module replacement: The life-
cycle of a vehicle includes regular maintenance and
also replacement of components. The manufacturer
authorized maintenance, which might include soft-
ware updates that modify the vehicle’s behavior and
that might change engine parameters, will require a
re-training of CAID. Again, this could open the sys-
tem to attacks.

• Training at large scale: The current approach re-
quires each car to train an individual ANN. This is
a clear drawback, because a training set has to be
built for each car individually. Splitting the training
in two phases could remove that constraint: First a
generic ANN is pre-trained for one model series and
then adapted using vehicle specific data [9].

• Security: Due to the centralized approach of hav-
ing only one ECU implementing the entire RU, it is
easy to deactivate the CAID by removing this ECU
from the CAN network. In order to increase avail-
ability, a distributed approach can be considered by
spreading the modules of the RU on different ECUs
which cannot be abstracted from the IVN.

• Data quality: Data collection using the OBD-II in-
terface is very convenient, because it is accessible

and an entire tooling ecosystem has evolved around
wireless OBD-II dongles. The sampling frequency
using this interface, however, scales linearly with
the number of data points queried, because of the
request/reply protocol specified. For many appli-
cations this is no limitation, but for checking the
engine behaviors, a higher data fidelity would be
preferable. Directly connecting to the CAN bus
would remove this constraint, but requires knowl-
edge of the vehicles CAN IDs.

As an RU performs a similar function to that of a run-
time monitor, the CAID approach could be integrated
with the diagnostics system. There is definitely a mu-
tual benefit between monitoring a system for safety and
correct operation as well as for security. Detectors using
algorithms to discern between accidental and malicious
failures could then be implemented [1].

Finally, a limitation is that the recognition process did
not exactly reveal what was going wrong, but was only
able to raise a red flag.

7 Conclusion

Manipulation of control systems is a real threat for ve-
hicles. An example is chip-tuning in which the engine
control parameters are modified to provide more power
and/or torque, sometimes with unwanted and potentially
safety-critical side-effects. Malicious manipulation to
modify a vehicle’s driving behavior that endangers pas-
sengers’ safety would be possible as well. This paper
presented the CAID framework to unveil such manipu-
lations. The effectiveness of the framework is demon-
strated at the example of chip-tuning of an actual test
vehicle. After training on relevant engine parameters, a
Bottleneck ANNs was capable to detect deviations in the
behavior of the control system. The result gained in the
automotive case study is promising and it has the poten-
tial to extend to various other control systems. This ap-
proach has been proposed to overcome the limitations in
today’s automotive IDS that do not incorporate physical
models. All future automotive IDS should incorporate
mechanisms to protect the physical domain and to stay
competitive with advanced automotive attacks.
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