
2024-01-2799 Published 09 Apr 2024

Abstract

In the ever-evolving landscape of automotive technology,
the need for robust security measures and dependable
vehicle performance has become paramount with

connected vehicles and autonomous driving. The Unified
Diagnostic Services (UDS) protocol is the diagnostic
communication layer between various vehicle compo-
nents which serves as a critical interface for vehicle
servicing and for software updates. Fuzz testing is a
dynamic software testing technique that involves the
barrage of unexpected and invalid inputs to uncover
vulnerabilities and erratic behavior. This paper presents
the implementation of fuzz testing methodologies on the
UDS layer, revealing the potential vulnerabilities that could
be exploited by malicious entities.

By employing both open-source and commercial
fuzzing tools and techniques, this paper simulates real-
world scenarios to assess the UDS layer’s resilience
against anomalous data inputs. Specifically, we deploy

several open-source UDS implementations on a
Controller Area Network (CAN) testbed and use them
as a target for the aforementioned fuzzing tools. The
outcomes of the fuzzing campaigns provide both auto-
makers and researchers with insights about the
completeness of open-source UDS implementations,
as well as existing vulnerabilities. Our recommendations
are intended to inform researchers and developers
about the current state of these implementations, espe-
cially if they consider integrating them into their
products. Ultimately, the use of open-source implemen-
tations in the automotive domain promises a more
secure, easier to maintain, safer, and cheaper develop-
ment process.

This paper underscores the significance of continuous
testing and fortification in ensuring the integrity of auto-
motive systems with a particular focus on UDS, offering
a valuable contribution to the advancement of secure
vehicular technology.

Introduction

The adaptation of electronics by the automotive
sector has evolved the current generation of
vehicles into smart and connected machines.

Modern vehicles can carry Internet and Bluetooth capa-
bilities, electronic engine control and steering, a connected
entertainment system, several cameras and screens,
driving assist, and even autonomous driving. To provide
such functionality, vehicles contain an internal network
of Electronic Control Units (ECUs), which are small
embedded devices with individual responsibilities. This
internal network is commonly referred to as an In-Vehicle
Network (IVN).

Several criteria attract customers to a vehicle.
Comfort, ease of driving, fuel efficiency, emission rates,
and perhaps most importantly safety are among what is
expected from a modern vehicle. In contrast, perhaps
because automobiles have been around much longer than
electronics have and such a concern had never been

necessary, the cybersecurity of a vehicle is often not taken
into account by the average customer; or, it is assumed
to be at a satisfactory level. This means that the manu-
facturers’ investments into cybersecurity are effectively
not marketable, thus not directly profitable. Moreover,
vehicle security is researched and developed by manu-
facturers as proprietary software and is not publicly verifi-
able unless reverse engineered. As demonstrated by the
many existing vulnerabilities in modern vehicles [1, 2, 3, 4,
5, 6], such individual efforts by manufacturers often fall
short. Thus, we argue that good vehicle security should
be the product of the collective efforts of research institu-
tions and individual researchers; and, proprietary tools
and software are not a good basis for security because
they are less accessible and harder to verify. This work
particularly focuses on the availability of UDS, the de facto
application layer standard for in-vehicle diagnostics.

Currently, studying UDS is an expensive and unfea-
sible task. The UDS implementations used in vehicles are

Received: 09 Nov 2023 Revised: 01 Feb 2024 Accepted: 05 Feb 2024

Comparing Open-Source UDS Implementations Through
Fuzz Testing
Levent Çelik Clemson University

John McShane Eastern Michigan University

Christian Scott, Iwinosa Aideyan, Richard Brooks, and Mert D. Pese Clemson University

Citation: Çelik, L., McShane, J., Scott, C., Aideyan, I. et al., “Comparing Open-Source UDS Implementations Through Fuzz Testing,”
SAE Technical Paper 2024-01-2799, 2024, doi:10.4271/2024-01-2799.

 2 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

proprietary and can only be accessed in a black-box
setting. Moreover, different vehicle models often have
different UDS implementations, even if they are manu-
factured by the same manufacturer. Thus, verifying the
state of the art UDS security requires testing each model
or ECU individually. Not only can these tests result in
permanent loss of functionality on ECUs, it also requires
the work of experts; thus, it comes with a non-negligible
cost. On the other hand, proper open-source UDS imple-
mentations would allow a wider range of approaches to
security, leading to a more rapid development and wider
verification, while also being cost efficient and less prone
to errors. Moreover, since the UDS standard gets updated
periodically and its implementations require software
patches, having a shared implementation would cut from
such maintenance efforts. Lastly, a publicly verifiable UDS
implementation could help eliminate security by obscurity
in the automotive field. To see the current state of publicly
available UDS implementations, this paper tests open-
source UDS implementations by employing fuzz testing
tools and techniques, as well as manually crafted tests.
Our Contributions:

 • We survey and analyze the functionality of open-
source UDS implementations;

 • To the best of our knowledge, we are the first
academic work to deploy a fuzzer on
these implementations;

 • Through fuzz testing and manual test inputs,
we assess the UDS implementations’ functionality
and stability;

 • We compare an open-source and a proprietary
fuzzer for automotive penetration testing.

Background

In-Vehicle Network (IVN) Protocols
Several IVN protocols are used for different purposes
inside a modern vehicle. CAN, LIN, FlexRay, MOST, and
Ethernet are a notable few. We focus primarily on CAN
[8], which is the predominant IVN protocol [6] owing to
its cost-effectiveness and simplified manufacturing
process. It allows for priority communication between
ECUs using message IDs [6, 9], and has real time guar-
antees on message delivery times. It is a broadcast
protocol without source or destination addresses. These
factors ensure CAN’s value for vehicles that require strict
guarantees for message delivery times and prioritized
messages; however, it was not designed with security in
mind [2, 9], is unencrypted and unauthenticated, and it
only supports a bandwidth of up to 1 Mbps.

An IVN protocol that has been recently receiving
interest by researchers and OEMs alike is Automotive
Ethernet due to its higher bandwidth compared to other
IVNs, and the existing higher layer protocols built on it

such as IP and TCP. Although it is simply referred as
“Ethernet” in automotive context, Automotive Ethernet
differs slightly from its regular counterpart. Mainly,
Automotive Ethernet is designed to have higher resis-
tance to signal noise, lower cost of wiring, and better
electromagnetic immunity, which are all critical require-
ments for IVN networks. Current implementations
support a bandwidth of up to 1 Gbps; and, higher data
rates are being standardized for future applications.
Although Ethernet has significant advantages, CAN is still
the most prevalent IVN protocol, given its longer history
and lower cost. In the context of this paper, we have
chosen not to delve into the intricacies of Ethernet and
reserved it for future work. The CAN message format is
depicted in Figure 2.

Modern vehicle networks can contain more than 100
ECUs, with most ECUs implementing a UDS server. A
large number of ECUs adds much weight, cost, and
complexity to a vehicle. The automotive industry is now
undergoing a major shift in functionality with a new
concept called the Software-Defined Vehicle (SDV),
heralding a transformation approach to new automotive
design and functionality by transitioning from hardware-
centric models to those dominated and defined by
software. This notion has emerged due to advancements
in automotive technologies, particularly with the intensi-
fication of electrification, connectivity, and autonomous
driving capabilities within vehicles. The underlying premise
resides in utilizing software as the primary medium to
control, optimize, and innovate vehicular functionalities
and user experiences. With a consolidation of ECUs, fewer
ECUs will implement UDS with possibly fewer variance
among the deployed UDS implementations.

Unified Diagnostic Services (UDS)
UDS is one of the most prominent application layer
protocols in an IVN. It presents a client-server model,
where a client submits queries to a server in the form
of “requests” and the server replies in the form of
“responses”. Usually, the client is the tester and the server
is an ECU, but an ECU can also act as a client and make
internal UDS requests to other ECUs. UDS is standardized
in ISO 14229 [10].

UDS operates as a request-driven protocol and is
adaptable for implementation over various foundational
protocols, including CAN and Ethernet. Figure 1 illustrates
potential UDS configurations. This paper focuses on the
most common version, UDS on CAN.

Designed for diagnostics purposes, UDS is a strong
tool with great capabilities. The UDS standard defines
many “services”, protocols for different purposes, from
which OEMs (Original Equipment Manufacturer) can
selectively integrate into each ECU. The capabilities of
these services can range from simply communicating
that the connection is still ongoing using the Tester
Present service, to reading and writing data by memory
addresses using Read Memory By Address and Write
Memory By Address services, and to resetting the ECU

 3 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

with the ECU Reset service. Which services each ECU
defines may be different, even inside the same vehicle,
and is left to the OEM’s discretion. While the UDS standard
outlines the basic message structures and service identi-
fiers, OEMs typically determine the specific syntax and
significance of messages, as well as the encoding methods
for return values. As a result, this information is propri-
etary and not publicly documented [11].

The basic structure of a UDS request message
consists of four notable fields: CAN ID, Protocol Control
Information (PCI), Service Identifier (SID), Sub Function Byte
(SFB), and Data Parameters.

A positive response to a UDS request is very similar
and has the same structure. Figure 3(a) displays the struc-
ture of a UDS request/positive response message.

 • CAN ID: An 11-bit ID associated with every CAN
message. This field has a slightly different meaning
in UDS compared to raw CAN. The CAN protocol
does not mandate the assignment of a unique ID to

each ECU; rather, it employs CAN IDs for message
prioritization and identification. UDS, on the other
hand, correlates each CAN ID with a distinct ECU to
establish a source/destination mechanism. Within
this framework, each UDS server listens to a certain
set of CAN IDs and issues responses from a singular
CAN ID.

 • PCI: PCI is a 1 to 3 bytes long field containing
information about the length of the message. Up to
8 bytes of data can be sent by a single CAN packet,
which is further reduced by the PCI, SID, and SBF
bytes’ occupying space; but, messages containing
larger data can be transmitted over multiple CAN
packets. This field is identified not by the UDS
standard, but the ISO-TP standard [12] instead, which
defines the transportation layer of UDS over CAN.

 • SID: The request and response of each UDS service
is assigned a unique ID by the ISO 14229
specification [10]. Typically, the SID of a positive
response is 0x40 greater than its corresponding
request ID. For instance, the Diagnostic Session
Control Service request, designed to modify the
diagnostic session mode, has the ID 0x10; and, the
positive response to this request is 0x50.

 • SBF: Some UDS services may define “subfunctions”
to specify the exact use of the service. In other
words, it allows a single service to have different
functionalities or configurations. Continuing the
example, an SBF of 0x2 combined with the SID 0x10

 FIGURE 2 CAN Message Format (Source: [9])

 FIGURE 1 IVN Architectures, 7 Layer OSI Model (Adapted from [7])

 FIGURE 3 UDS Message Structure (Adapted from [7])

 4 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

signals a request to change the diagnostic session
mode to “Programming Mode”. Conversely, an SBF
of 0x1 indicates a request to switch to the
“Default Mode”.

 • Data Parameters: Defines the payload of the
package. Some services or sub functions may not
require any data all; Diagnostic Session Control is one
such example.

The structure of the negative response differs slightly.
It still starts with the CAN ID and PCI field, but introduces
two new fields: Rejected SID, and Negative Response Code
(NRC). It also no longer contains an SBF or data param-
eters. Figure 3(b) displays the structure of a UDS negative
response message. A negative response is identified by
its unique SID, which is defined as 0x7F.

 • Rejected SID: The SID of the rejected UDS request.
Replaces the SBF field.

 • NRC: Contains information about why the request
was rejected. Some common ones include 0x11 for
Service Not Supported, and 0x33 for Security Access
Denied. Replaces data parameters.

Due to its robust features, UDS presents a significant
target for potential attackers. With malicious intent, UDS
can be used to steal data or bypass business operations
[13], as a gateway for denial of service attacks, to disrupt
software updates [3], even for sabotage or for gaining
remote access to the vehicle [2, 5, 13]. Given that UDS
operates on networks like CAN, which lack built-in security,
it necessitates its own security mechanisms. Three UDS
services are defined for this purpose:

Security Access (0x27): Provides access to security
critical services. Clients cannot access some of the
services that ECUs offer without first gaining security
access using this service. Which services are locked
behind security access is left to the discretion of the OEM.
The basic structure of this protocol is as follows: First,
the client requests a seed (a cryptographic nonce) from
the server. The server decides on a seed, and sends it to
the client. Then, both the client and the server calculate
a key using the seed and a pre-determined algorithm.
Lastly, the client sends the key to the server, and the
server authorizes security access if the key it received
matches the key it calculated. How the nonce is decided
and how the key is calculated using the nonce is not
defined by the UDS standard. This design is subject to
numerous vulnerabilities. First, the UDS standard has no
requirements on the length of the seed. Second, it has
no requirements on the cryptographic strength of the
algorithms used. Third, this service does not provide
authenticated or encrypted communication; hence, it can
be targeted by a variety of attacks [1, 2, 3] present real-
world applicable attacks to UDS by exploiting this service.

Authentication (0x29): Presented in the 2020 edition
of [10] as an improvement and an alternative to 0x27,
0x29 provides much better security compared to 0x27.
It identifies different methods of authentication, most
notably through PKI certificate exchange. Aside from
authentication, it optionally provides a means for key

generation through Diffie-Hellman key agreement algo-
rithm. However, it is not yet widely implemented in real-
world scenarios, and is not implemented in any of the
open-source frameworks we have tested.

Secured Data Transmission (0x84): Provides confi-
dentiality and integrity to UDS messages through means
of encapsulation. This service is used encrypt and/or sign
another UDS packet, which it includes in its data param-
eters. It allows ECUs to choose between different algo-
rithms to be used in encryption and signature schemes,
and dynamically determine signature sizes. Seemingly,
there is not a lot of information regarding this protocol,
aside from the specifications in ISO 14229.

Fuzz-Testing
Fuzz testing has been identified as a highly effective meth-
odology for testing security vulnerabilities, especially in the
automotive industry [14, 15] state that fuzzing and penetra-
tion testing technologies should be applied in the develop-
ment of automotive cybersecurity activities [16]. The
primary objective of fuzz testing is to systematically
generate a substantial volume of unanticipated input using
a certain methodology, and observe the system’s response
in order to identify potential vulnerabilities. Fuzzing tech-
niques are mainly categorized based on input construction
methods, which can be classified into two main types:
Mutation-based fuzzing and generation-based fuzzing.
Based on the tool’s knowledge of the system under test,
it is further labeled as white box, black box, or gray box [17].

Mutation-based fuzzing involves modifying existing
valid inputs by randomly mutating or combining certain
parts of the previous inputs [18]. It allows for the creation
of smaller fuzz input sets, but its success depends on the
diversity and coverage of the starting set. On the other
hand, generation-based fuzzing focuses on creating entirely
new inputs from scratch through specific rules or models.
It allows for the creation of a more diverse set of inputs,
enabling the discovery of complex vulnerabilities that may
be difficult to find through mutation-based fuzzing alone;
however, this leads to a larger set of fuzz inputs, leading
to the tests taking a longer time. The ratio of vulnerabilities
discovered to test inputs generated is expected to be larger
with the former technique; in contrast, the amount of
vulnerabilities discovered is expected to be higher with the
latter. We use both techniques to an extent, as discussed
in PCAN-View and Comparison of Fuzzers.

Black-box testing treats the system as a “black box”
with no knowledge of its internal workings. It focuses on
the system’s inputs and outputs with no regard to the
source code or the internal structure. It tests the system
with real-world usage scenarios to assess how well the
software meets its intended goals. Black-box testing is
invaluable for evaluating the overall functionality, perfor-
mance, and compliance of any software system; because
it does not require any specific knowledge and the same
testing software can be easily transferred to other
systems. White-box testing involves examining the source
code, control and data flow, as well as the logic of software
components, thereby providing deep insights into the

 5 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

software’s behavior. It may uncover problems specific to
the system under test. However, it requires access to the
source code and in-depth technical knowledge and may
not uncover issues related to system integration or
external interfaces. Also, it requires the tests to be specific
to a system and the testers generated this way are not
very transferable. Gray-box testing involves a combination
of both methods: A high-level system knowledge and
some understanding of the internal components, but not
a deep understanding of the source code. Testers then
use these information to design effective test scenarios
that focus on specific parts of the system.

Fuzz testing can be applied in two different prominent
styles with distinctive approaches and objectives:

Source code fuzzing targets the code base of the
system or application under test by introducing malformed
or unexpected input data directly into functions and code
syntax. This technique is considered to be very similar to
unit tests. One of the well-known fuzz testing tools in the
cybersecurity realm is American Fuzzy Lop (AFL) [19], which
is among the most widely used fuzzers [20].

Protocol fuzz testing predominantly targets the
exploration of vulnerabilities in the communication proto-
cols used by software applications. This technique uses
a certain protocol, such as UDS, to communicate with the
system to test for system robustness. One widely recog-
nized tool specifically tailored for protocol fuzz testing is
a commercial tool named Defensics [21], which we also
employ in our tests.

Both protocol fuzz testing and source code fuzzing
hold imperative positions in a comprehensive security
testing strategy. Source code fuzzing should be conducted
early on in the software development life cycle to catch
issues as they arise. Protocol testing should periodically
be employed in major software releases to test for poten-
tial vulnerabilities.

Related Work

UDS
Engaging with UDS is notably challenging, not only
because of its complexity, but also because relevant
resources are scarce, much of the information is propri-
etary, and obtaining the standard is expensive [7] offers
a strong introduction to the subject.

As in-vehicle electronics continue to advance and new
vulnerabilities are discovered, the UDS protocol is continu-
ally evolving. Due to the relative novelty of 0x29:
Authentication Service, which was added to the last itera-
tion of the UDS standard [10] in 2020, academic research
has predominantly concentrated on the 0x27: Security
Access Service.

Van den Herrewegen et al. [2] studied vehicles from
four major automotive manufacturers. It targets 0x27 and
exposes several vulnerabilities related to both implementa-
tion processes and cipher selection. After gaining security
access through attacks, it demonstrates how an attacker
can recover secrets or run malicious code in the ECU.

Sermpinis [1] discovers a vulnerability in the random
seed generation of ECUs, which is used for Security Access
Service, and employs fuzz testing techniques to verify and
attack the vulnerability.

Lauser et al. [4] use the Tamarin Model [22] to formally
analyze the security of both 0x27 and 0x29. It argues that
the prior lacks details in the standardization, which leads
to insecure implementations; and, discovers two vulner-
abilities in the latter. It concludes by noting that even
though the standard might be secured, the implementa-
tions must also be checked for errors.

UDS Fuzzing
UDS Fuzzing has received limited attention in literature.
Sermpinis [1] employs fuzzing techniques to highlight a
critical vulnerability of a proprietary UDS implementation
used in real-world situations. The presented attack abuses
the weak random number generation in ECUs, and the
fact that the ECU Reset service is not locked behind
security access. The works in [13, 23, 24] advocate for fuzz
testing as a potent instrument for automotive security,
with an emphasis on the CAN bus. Notably, [13] integrates
the suggested fuzzer through UDS services. Patki et al.
[25] design another CAN fuzzer and compare it to existing
proprietary automotive fuzzers. Luo et al. [16] delve into
methods for automotive testing and propose a penetra-
tion testing software providing both a CAN fuzzer and a
specialized UDS fuzzer.

Two prevalent themes are observed from previous
work. First, they focus on fuzzing ECUs while using CAN
or UDS as a gateway; and second, they fuzz proprietary
ECU implementations. We differ from them by directly
targeting open-source UDS implementations.

Experimental Setup
Our experimental setup consists of a server running on
a Linux system and a client running on Windows 10. A
simple two-device CAN network is established between
the server and the client using two PCANUSB connectors
[26] connected with a breadboard. The tested opensource
UDS servers are deployed one by one on the Linux envi-
ronment. The fuzzers (Caring Caribou, Defensics), as well
as PCAN-View are used from another computer running
Windows 10. PCAN-View is mainly used to manually send
CAN messages and to sniff the CAN traffic generated by
the testing software and the server under test. We use
the following tools in our test setup:

Caring Caribou
Caring Caribou [27] is an open source security testing
software designed to be deployed as a black-box tool on
any CAN network. It was used by [1] to find a vulnerability
in a real ECU and to attack it. It is a modular and expand-
able tool that can be used as a basis for commercial
fuzzers. Although Caring Caribou provides many

 6 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

functionalities, we particularly use the fuzzer and uds tools.
The fuzzer tool allows fuzzing the UDS servers through
different fuzzing methods; and, the uds tool provides
several helpful functionalities. We use the former with the
mutation option to set a specific CAN ID and/or an SID
while mutating other bits, and the latter with discovery,
services, and subservices options. These options discover
the CAN IDs to which servers listen to and from which they
respond, detecting the services that they provide, and the
subservices that each service encapsulates, respectively.

The Bash snippet depicted in Listing 1 showcases the
output of Caring Caribou run with the uds services option,
discovering the services that an UDS server named Gallia
[28] exposes.
LISTING 1: Output of Caring Caribou

Defensics
Defensics [21] is a multi-purpose, proprietary black-box
fuzz tester. Although we used it to test UDS and CAN, it
contains modules to test various protocols from other
industries. It uses a method called instrumentation, which
is querying a simple pre-set input before and after the
test input. By sandwiching the test input in between two
other inputs, the program can detect the exact input that
causes the server to misbehave. Aside from being a
fuzzing tool, Defensics also offers other testing methods
as well, but they are out of our scope. Convenient for
non-experts, it has a relatively simple graphical interface.
Figure 5 depicts an example run of Defensics.

SocketCAN
SocketCAN or can-utils [29] is a set of tools and utilities
to access a CAN network. Among the several utilities that
it provides, we particularly make use of candump and
cansend, which are used to log and display the CAN traffic,
and send custom CAN messages, respectively.

PCAN-USB CAN Bus Connector
The PCAN-USB [26] is a straightforward tool that offers
a USB interface for connecting a computer to a CAN
network. The adapter provides CAN drivers as well, which
Windows devices typically lack. We employ two of them
to connect two computers to a CAN network. The appear-
ance of the tool is illustrated in Figure 4.

PCAN-View
PCAN-View [30] is a Windows GUI tool with capabilities
to sniff, send, and record messages in a CAN network.
Being a graphical tool makes it more user friendly

 FIGURE 4 PCAN-USB CAN Bus Connector

 7 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

compared to terminal applications, especially for non-
experts. The software is included with PCAN-USB.

Methodology

Overview
We test each UDS implementation in a virtual setting;
that is, we do not deploy them on an actual ECU for
testing. This is because writing to random memory
addresses or setting invalid but unchecked parameters
can permanently damage an ECU or even render it inop-
erative. Consequently, conducting tests in a virtual envi-
ronment is not only more cost-efficient but also prevents
irreversible harm to the hardware.

We sequentially deploy the UDS implementations on
a Linux system. First, following a black-box approach,
we test the capabilities of the implementations by sending
simple UDS packets and listening to responses. We initiate
this process by employing the uds tool of Caring Caribou

to discover the services, subservices, and CAN IDs that
each library exposes. Following this, we transmit UDS
request packets — deliberately structured to elicit specific
positive or negative responses from the server—and
analyze the received responses or their absence to draw
conclusions. Second, we use the fuzz testing tools, namely
the fuzzer module of Caring Caribou and Defensics.
We compare the two tools as well as the UDS servers
under test.

Deploying the fuzzer directly on the implementations
to systematically uncover vulnerabilities presents a non-
trivial challenge when the systems under test are mostly
unfinished work. This is primarily because of two reasons.
First, among the implementations surveyed, only two
include the ECU Reset Service, which is essential for
continuous fuzzing. Notably, among the two libraries that
implement the ECU Reset Service, one ceases to respond
following an ECU Reset request. Second, aside from being
unfinished work, several of the implementations are
designed as libraries, and the example programs they
implement hold placeholder functionality, if any. Thus,
uncovering any “hidden” vulnerabilities is made harder by
many surface level issues.

 FIGURE 5 Example Run of Defensics

 8 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

Metrics
We evaluate the UDS implementations in two aspects:
The number of services and subservices they provide,
and the correctness of their behavior. We use Caring
Caribou to uncover the services and subservices; and, use
Caring Caribou together with Defensics to fuzz the UDS
servers to test their behavior. We also compare the
two tools.

Number of Services
We employ Caring Caribou’s uds module to determine
the number of services each library implements; and
review the documentation and the code to identify any
partially implemented service that the tool might have
missed. It should be noted that such an oversight can
only occur in instances where the server fails to respond
to a request, or the example program does not include
all implemented services. We then manually check each
service through UDS communication to better under-
stand to which extent it was implemented, e.g., whether
changing the diagnostic session with Diagnostic Session
Control has any real effect to the programs’ behavior, how
the seed is generated for Security Access, etc.

Defensics could also be employed to discover the
available services, but Caring Caribou conducts a more
extensive brute search while Defensics searches for
known services. Caring Caribou is also faster due to not
employing instrumentation, which is not necessary for
the discovery task.

Correct Behavior
First, we employ Caring Caribou’s fuzzer module to
generate random inputs for the server. We evaluate the
servers’ robustness by submitting both coherent and
incoherent messages, observing whether such inputs
induce system instability, unresponsiveness, or failure.
The test cases generated this way are valid CAN frames,
but they are not generated according to UDS specifica-
tions. This module does not listen to server responses
either, which adds another layer of difficulty to testing for
incorrect behavior. Caring Caribou also offers a uds fuzz
module which does listen to server responses; however,
that module serves the purpose of testing the Security
Access Service as employed by [1], and not the general
behavior of the system under test.

Secondly, we employ Defensics, which can generate
fuzz test inputs specifically to test the UDS server
behavior. Instead of rapidly generating test cases regard-
less of server behavior, Defensics checks the server
response before and after every test input; and, it gener-
ates test cases specifically to cover the UDS layer [31].

Comparison of Fuzzers
Caring Caribou is built on top of python-can and allows
the user the freedom to extend it as needed since it is
fully written in Python and is open sourced. Aside from
some specific applications for the Security Access Service,
Caring Caribou lacks any knowledge of how to send
correct UDS fuzz messages based on ISO 14229; so many
invalid inputs will be dropped by the target before
reaching deep in the target’s code paths, reducing the
impact of fuzzing and increasing test times. It can
be deployed trivially onto any CAN network, and is still
actively developed and maintained.

Defensics is a commercial tool and has contributed
to many CVEs over the years. It is capable of generating
fuzzed messages based on ISO 14229 [10], which increases
the chance of finding a failure, since it can test more code
paths in the system under test by specifically targeting
different behavior from the target. It is also useful for
non-UDS related testing since it contains a large selection
of test suites with varying purposes. It must also be noted
that Defensics requires a PCAN interface and does not
work on virtual CAN networks out of the box.

In summary, Defensics is a robust tool with applica-
bility across various domains, while Caring Caribou offers
a lightweight, extensible and modular command-line
interface that can interact with any CAN interface through
SocketCAN, including virtual CAN interfaces.

Experimental Evaluation
We identified eight open-source UDS server implementa-
tions available on GitHub, among which two were
designed for special hardware: PASTA [32] and RAMN [33]
are vehicle testbed projects that include UDS server
implementations. We focus on the six that is not platform
specific, but still mention the other two; because, they
are open sourced and may provide valuable starting
points for more general UDS implementations, especially
given that they are already used in real-world scenarios
together with their hardware counterparts.

A server may expose and/or implement a UDS service,
if the server recognizes the service and/or contain func-
tionality for it, respectively. Among the implementations
we found, four implement and expose some subsets of
services, as can be seen in Table 1. More details about
the exact services each library implements or exposes
are depicted in Table 2 (see APPENDIX A).

Gallia
Gallia [28] is an extendable automotive penetration testing
framework. It can function as a UDS server—or in Gallia’s
terminology—a “virtual ECU”. Among the implementa-
tions we’ve identified, Gallia stands out as the most robust
and dependable by a significant margin. Moreover, it

 9 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

comes with built in support for CAN and TCP as the
underlying layer of communication.

Gallia provides the option to generate a virtual ECU
with randomized services and subservices, as well as the
option to simulate an ECU from a database of UDS logs.
Our focus was on the first option, through which one can
modify the randomness and generate a functioning UDS
server which exposes any common UDS service. In fact,
it is the only stack that provides actual functionality for
the services it implements; thus, it was the only stack
upon which we found it meaningful to deploy Defensics.

It proved reliable against Caring Caribou’s CAN fuzzer
module, as well as Defensics’ UDS fuzzer suite. Indeed, it
passed all the tests generated by Defensics.

We must also note that as of writing this paper, Gallia
has a very active GitHub community, which could prove
useful for new contributors.

iso14229
iso14229 [34] implements both client and server UDS
applications for Linux environment. Its main purpose is
to serve as a library for UDS function calls instead of a
standalone UDS implementation; however, it provides a
simple server and client example as well. These examples
mainly hold placeholder functionality for the services. For
instance, the Security Access Service returns an example
seed of [1, 2, 3, 4], and grants access to any key. Regardless,
it implements 13 services in total and is one of the easier-
to-use implementations.

Although it had proven to be mostly reliable, sending
a simple ECU Reset request resulted in the example server
to go into an unresponsive state. Additionally, since it
primarily featured placeholder functionality for the
services implemented, using Defensics on it did not yield
any significant results.

uds-to-go
uds-to-go [35] is a lightweight UDS server and client
implementation. We have discovered that as of writing
this paper, it implements five services; however, sending
a Read Data By Identifier request caused the server to
stop responding.

UDSim
UDSim [36] is an ECU network simulator. Most notably,
it comes with a GUI to simulate the network traffic visually.
Its main purpose is to listen to UDS data through network
sniffing or by reading UDS logs, and then simulating the
network. It recognizes all standard UDS messages, but
does not respond to them. After training on real UDS
communication, it can function as a UDS server. However,
it is not immediately deployable as a standalone UDS
server without training, unless it is extended with the
functionality.

py-uds
py-uds [37] is still in its initial stages of development. While
it does not currently have a UDS server implementation,
it is intended to implement support for both the client
and server aspects of UDS across CAN, Ethernet, LIN,
FlexRay, and K-Line.

UDS-Server
Finally, UDS-server [38] is a Scala implementation for UDS.
The repository lacks documentation and instructions for
building the application, preventing us from testing it.
However, we chose to mention it in our paper since it
represents the sole Scala-based UDS implementation
we came across. Reading the code manually, we believe
that it does not implement any services.

Conclusion
History has repeatedly demonstrated that effective
software security results originate from collaborative
efforts, and hindering such collaboration through obscu-
rity is detrimental to security systems. Vehicle security is
no exception. For UDS to garner interest from a broader
spectrum of researchers, it needs to be more publicly
accessible. One potential avenue to facilitate this is the
establishment of robust open-source libraries. Despite
our extensive search, we could only identify six non-plat-
form specific open-source UDS server implementations.
Our examination and fuzzing of these implementations
revealed that many are preliminary projects stemming
from the efforts of individual researchers; moreover, there
is not a single project that implements more than half of
the services. Nonetheless, certain notable implementa-
tions present significant potential to make the field of
UDS security more accessible to emerging researchers,
and to be a good foundation for real-world applications.
Notably, the Gallia framework [28] distinguished itself with
its thorough and robust implementation of a virtual ECU,
while iso14229 [34] emerges as a commendable
runner-up.

Robust UDS implementations require proper testing,
especially for the purpose of security-related services and

TABLE 1 Number of UDS services implemented by projects.

Project Name Services Exposed
Services
Implemented

Gallia [28] 271 10
iso14229 [34] 13 13
uds-to-go [35] 5 5
UDSim [36] 241 0
py-uds [37] 0 0
UDS-Server [38] 0 0
1 As can also be seen from Listing 1 Gallia exposes ”services” with SID
0x01 through 0x0a. These are OBD-II functionality and are not UDS
services. Similar holds for UDSim.

 10 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

functionalities. The capabilities of current open-source
automotive penetration testing frameworks have yet to
match the advanced features offered by leading commer-
cial tools. We argue that more advanced open-source
fuzzers are a necessity for extensive testing in the auto-
motive domain for reasons similar to the necessity of
open-source UDS implementations.

Moving forward, we plan to contribute to the land-
scape of open-source UDS to bring it to a state compa-
rable to real-world ECUs, by improving upon the existing
UDS repositories and fuzzing tools by actively partici-
pating in their development.

References
 1. Sermpinis, T., Uds Fuzzing and the Path to Game Over

(Heidelberg, Germany: Presented at the Troopers, 2022)
 2. Van den Herrewegen, J., and Garcia, F., “Beneath the

Bonnet: A Breakdown of Diagnostic Security,” in 23rd
European Symposium on Research in Computer Security,
Esorics 2018, Barcelona, Spain, September 3-7, 2018,
Lecture Notes in Computer Science. Springer, Cham,
Aug. 2018, vol. 11098, 305-324, doi: 10.1007/978-3-319-
99073-6_15.

 3. Liis, J., “Security Evaluation of the Electronic Control Unit
Software Update Process,” Ph.D. dissertation, Royal
Institute of Technology, 2014.

 4. Lauser, T., and Kraus, C., “Formal Security Analysis of
Vehicle Diagnostic Protocols,” in Proceedings of the 18th
International Conference on Availability, Reliability and
Security (Benevento Italy: ACM, 2023), 1-11,
10.1145/3600160.3600184 (visited on 10/09/2023).

 5. Greenberg, A., “Hackers Remotely Kill a Jeep on the
Highway—With Me in It,” Wired, 2015, accessed October
9, 2023, https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway/.

 6. Khatri, N., Shrestha, R., and Nam, S.Y., “Security Issues
with In-Vehicle Networks, and Enhanced
Countermeasures Based on Blockchain,” Electronics, 10,
8, 893, 2021, 10.3390/electronics10080893 (visited on
10/09/2023).

 7. Martin Falch, “UDS Explained - A Simple Intro,” accessed:
October 9, 2023, CSS Electronics, 2022, https://www.
csselectronics.com/pages/uds-protocol-tutorialunified-
diagnostic-services.

 8. “Road Vehicles — Controller Area Network (CAN) — Part
1: Data Link Layer and Physical Signalling,” International
Organization for Standardization, Geneva, CH, Standard,
2015.

 9. Pesé, M.D., “Bringing Practical Security to Vehicles,” Ph.D.
dissertation, The University of Michigan, 2022.

 10. “Road Vehicles—Unified Diagnostic Services (UDS)—Part
1: Application Layer,” International Organization for
Standardization, Geneva, CH, Standard, February 2020.

 11. Yu, L., Liu, Y., Jing, P., et al., “Towards Automatically
Reverse Engineering Vehicle Diagnostic Protocols,” in

Proceedings of the 31st USENIX Security Symposium,
USENIX Association, 2022, 1939-1956.

 12. “Road Vehicles - Diagnostic Communication over
Controller Area Network (DOCAN) - Part 2: Transport
Protocol and Network Layer Services,” International
Organization for Standardization, Geneva, CH, Standard,
April 2016.

 13. Bayer, S., and Ptok, A., “Don’t Fuss about Fuzzing:
Fuzzing Controllers in Vehicular Networks,” 2015, https://
www.escar.info/images/Datastore/2015_escar_EU_
Papers/3_escar_2015_Stephanie_Bayer.pdf.

 14. SAE International, “Cybersecurity Guidebook for
Cyberphysical Vehicle Systems,” SAE Standard J3061
202112, December 2021, STABILIZED Dec 2021.

 15. “Road Vehicles - Cybersecurity Engineering,” Geneva,
Switzerland, Tech. Rep. 21434, August 2021, International
Standard published [60.60], 81.

 16. Luo, F., Zhang, X., and Hou, S., “Research on
Cybersecurity Testing for In-Vehicle Network,” in 2021
International Conference on Intelligent Technology and
Embedded Systems (ICITES), IEEE, 2021, 144-150. doi:
10.1109/ICITES53477.2021.9637070.

 17. Dürrwang, J., Braun, J., Rumez, M., Kriesten, R. et al.,
“Enhancement of Automotive Penetration Testing with
Threat Analyses Results,” SAE Int. J. Transp. Cyber. &
Privacy 1, no. 2 (2018): 91-112, doi:https://doi.
org/10.4271/11-01-02-0005.

 18. Zhang, H., Huang, K., Wang, J., and Liu, Z., “Can-ft: A Fuzz
Testing Method for Automotive Controller Area Network
Bus,” in 2021 International Conference on Computer
Information Science and Artificial Intelligence (CISAI), IEEE,
2021, 225-231.

 19. Zalewski, M., “American Fuzzy Loop,” accessed 2023-10-
11, 2013, https://github.com/google/AFL.

 20. Fioraldi, A., Mantovani, A., Maier, D., and Balzarotti, D.,
“Dissecting american fuzzy lop: A fuzzbench evaluation,”
ACM Trans. Softw. Eng. Methodol. 32, no. 2 (2023),
doi:10.1145/3580596.

 21. Synopsys Inc., “Defensics,” accessed 2023-10-26, 2023,
https://www.synopsys.com/oftware-integrity/security-
testing/fuzz-testing.html.

 22. Basin, D., Cremers, C., Dreier, J., et al., “Tamarin Prover,”
accessed 2023-10-11, 2023, https://tamarin-prover.github.
io.

 23. Fowler, D.S., Bryans, J., Cheah, M., Wooderson, P. et al.,
“A Method for Constructing Automotive Cybersecurity
Tests, a CAN Fuzz Testing Example,” in 2019 IEEE 19th
International Conference on Software Quality, Reliability
and Security Companion (QRS-C) (Sofia, Bulgaria: IEEE,
2019), 1-8, 10.1109/QRS-C.2019.00015 (visited on
10/09/2023).

 24. Fowler, D.S., Bryans, J., Shaikh, S.A., and Wooderson, P.,
“Fuzz Testing for Automotive Cyber-Security,” in 2018
48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W),
2018, 239-246, 10.1109/DSN-W.2018.00070.

 25. Patki, P., Gotkhindikar, A., and Mane, S., “Intelligent Fuzz
Testing Framework for Finding Hidden Vulnerabilities in
Automotive Environment,” in 2018 Fourth International

http://dx.doi.org/10.1007/978-3-319-99073-6_15
http://dx.doi.org/10.1007/978-3-319-99073-6_15
http://dx.doi.org/10.1145/3600160.3600184
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://dx.doi.org/10.3390/electronics10080893
https://www.csselectronics.com/pages/uds-protocol-tutorialunified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorialunified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorialunified-diagnostic-services
https://www.escar.info/images/Datastore/2015_escar_EU_Papers/3_escar_2015_Stephanie_Bayer.pdf
https://www.escar.info/images/Datastore/2015_escar_EU_Papers/3_escar_2015_Stephanie_Bayer.pdf
https://www.escar.info/images/Datastore/2015_escar_EU_Papers/3_escar_2015_Stephanie_Bayer.pdf
http://dx.doi.org/10.1109/ICITES53477.2021.9637070
http://dx.doi.org/https://doi.org/10.4271/11-01-02-0005
http://dx.doi.org/https://doi.org/10.4271/11-01-02-0005
https://github.com/google/AFL
http://dx.doi.org/10.1145/3580596
http://www.synopsys.com/oftware-integrity/security-testing/fuzz-testing.html
http://www.synopsys.com/oftware-integrity/security-testing/fuzz-testing.html
http://dx.doi.org/10.1109/QRS-C.2019.00015
http://dx.doi.org/10.1109/DSN-W.2018.00070

 11 COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING

Conference on Computing Communication Control and
Automation (ICCUBEA) (Pune, India: IEEE, 2018), 1-4,
10.1109/ICCUBEA.2018.8697438 (visited on 10/05/2023).

 26. PEAK-System, “PCAN-USB: Can Interface for USB,
https://www.peak-system.com/
PCAN-USB.199.0.html?&L=1#, Accessed: 2023-10-27,
2023.

 27. GitHub Contributors, “Caringcaribou: A Friendly Car
Security Exploration Tool,” accessed 2023-10-11, 2023,
https://github.com/CaringCaribou/caringcaribou.

 28. Fraunhofer AISEC, “Gallia - Extendable Pentesting
Framework,” accessed 2023-10-26, 2021, https://github.
com/Fraunhofer-AISEC/gallia.

 29. Github Contributors, “Socketcan Userspace Utilities and
Tools,” accessed 2023-10-11, 2023, https://github.com/
linux-can/can-utils.

 30. PEAK-System, “PCAN-View,” accessed 2023-10-11, 2023,
https://www.peak-system.com/
PCAN-View.242.0.html?&L=1.

 31. Knudsen, J., and Varpiola, M., “Fuzz Testing Maturity
Model,” 2017.

 32. Toyota InfoTechnology Center, “Pasta: Portable
Automotive Security Testbed with Adaptability,”
accessed 2024-01-10, https://github.com/pasta-auto/
PASTA1.0.

 33. Toyota InfoTechnology Center, “RAMN (Resistant
Automotive Miniature Network),” accessed 2024-01-10,
https://github.com/ToyotaInfoTech/RAMN.

 34. Kirkby, N.J., “ISO 14229,” accessed 2023-10-26, 2022,
https://github.com/driftregion/iso14229/tree/main.

 35. Andrey, A., “UDS-to-Go,” accessed 2023-10-26, 2022,
https://github.com/astand/udsto-go.

 36. Smith, C., “UDSIM,” accessed 2023-10-26, 2015, https://
github.com/zombieCraig/UDSim.

 37. Dabrowski, M., “PY-UDS,” https://github.com/
mdabrowski1990/uds, accessed 2023-10-26, 2023.

 38. Psyriccio, “UDS-Server,” accessed 2023-10-26, 2015,
https://github.com/psyriccio/UDS-server.

Contact Information
Levent Çelik
Clemson University
lcelik@clemson.edu

John McShane
Eastern Michigan University
jmcshane@emich.edu

Iwinosa Aideyan
Clemson University
iaideya@clemson.edu

Richard Brooks
Clemson University
rrb@clemson.edu

Mert D. Pesé
Clemson University
mpese@clemson.edu

Acknowledgments
This work was supported by Clemson University’s Virtual
Prototyping of Autonomy Enabled Ground Systems (VIPR-
GS), under Cooperative Agreement W56HZV-21-2-0001
with the US Army DEVCOM Ground Vehicle Systems
Center (GVSC).

Definitions, Acronyms,
Abbreviations
CAN - Controller Area Network
UDS - Unified Diagnostic Services
LIN - Local Interconnected Network
IVN - In-Vehicle Network
ECU - Electronic Control Unit
ISO - International Organization for Standardization
ISO-TP - ISO Transport Layer
OEM - Original Equipment Manufacturer
OBD - On-Board Diagnostics
SID - Service Identifier
SBF - Sub Function Byte
SDV - Software Defined Vehicle
CVE - Common Vulnerabilities and Exposures

http://dx.doi.org/10.1109/ICCUBEA.2018.8697438
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://github.com/CaringCaribou/caringcaribou
https://github.com/Fraunhofer-AISEC/gallia
https://github.com/Fraunhofer-AISEC/gallia
https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
https://www.peak-system.com/PCAN-View.242.0.html?&L=1
https://www.peak-system.com/PCAN-View.242.0.html?&L=1
https://github.com/pasta-auto/PASTA1.0
https://github.com/pasta-auto/PASTA1.0
https://github.com/ToyotaInfoTech/RAMN
https://github.com/driftregion/iso14229/tree/main
https://github.com/astand/udsto-go
https://github.com/zombieCraig/UDSim
https://github.com/zombieCraig/UDSim
https://github.com/mdabrowski1990/uds
https://github.com/mdabrowski1990/uds
https://github.com/psyriccio/UDS-server
lcelik@clemson.edu

© 2024 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work
lies solely with the author(s).

ISSN 0148-7191

COMPARING OPEN-SOURCE UDS IMPLEMENTATIONS THROUGH FUZZ TESTING 12

Appendix
TABLE 2 Services Included In Each Server Implementation

	10.4271/2024-01-2799: Abstract
	Introduction
	Our Contributions:
	Background
	In-Vehicle Network (IVN) Protocols
	Unified Diagnostic Services (UDS)
	Fuzz-Testing

	Related Work
	UDS
	UDS Fuzzing

	Experimental Setup
	Caring Caribou
	Defensics
	SocketCAN
	PCAN-USB CAN Bus Connector
	PCAN-View

	Methodology
	Overview
	Metrics

	Number of Services
	Correct Behavior
	Comparison of Fuzzers
	Experimental Evaluation
	Gallia
	iso14229
	uds-to-go
	UDSim
	py-uds
	UDS-Server

	Conclusion

	References
	Acknowledgments
	Definitions, Acronyms, Abbreviations

