
2020-01-1295 Published 14 Apr 2020

Security Analysis of Android Automotive
Mert Pese and Kang Shin University of Michigan

Josiah Bruner Georgia Institute of Technology

Amy Chu Harman International

Citation: Pese, M., Shin, K., Bruner, J., and Chu, A., “Security Analysis of Android Automotive,” SAE Technical Paper
2020-01-1295, 2020, doi:10.4271/2020-01-1295.

Abstract

In-vehicle infotainment (IVI) platforms are getting increas-
ingly connected. Besides OEM apps and services, the next
generation of IVI platforms are expected to offer integra-

tion of third-party apps. Under this anticipated business
model, vehicular sensor and event data can be collected and
shared with selected third-party apps. To accommodate this
trend, Google has been pushing towards standardization
among proprietary IVI operating systems with their Android
Automotive platform which runs natively on the vehicle’s IVI
platform. Unlike Android Auto’s limited functionality of
display-projecting certain smartphone apps to the IVI screen,
Android Automotive will have access to the in-vehicle
network (IVN), and will be able to read and share various
vehicular sensor data with third-party apps. This increased
connectivity opens new business opportunities for both the

car manufacturer as well as third-party businesses, but also
introduces a new attack surface on the vehicle. Therefore,
Android Automotive must have a secure system architecture
to prevent any potential attacks that might compromise the
security and privacy of the vehicle and the driver. In partic-
ular, malicious third-party entities could remotely compro-
mise a vehicle’s functionalities and impact the vehicle safety,
causing financial and operational damage to the vehicle, as
well as compromise the driver’s privacy and safety.

This paper presents an Android Automotive system archi-
tecture and provides guidelines for conducting a high-level
security analysis. It also describes what countermeasures have
already been taken by Google to prevent potential attacks, and
discusses what still needs to be done in order to offer a secure
and privacy-preserving Android experience for next-genera-
tion IVI platforms.

Introduction

Android was launched in late 2008 as a mobile oper-
ating system by Google. While this open-source
Linux-based platform was initially designed for touch

screen-equipped mobile phones - dubbed as smartphones - the
success of this versatile operating system on widely popular
phones led Google to develop Android versions for TVs and
smartwatches in the early 2010s. Android’s penetration into
different markets culminated in the launch of Android Auto
in 2015, which was also due partially to the introduction of
touch screens for in-vehicle infotainment (IVI) systems.

Android Auto is an app that runs on mobile handsets and
once connected to the IVI (over USB, WiFi or Bluetooth
AVRCP) projects certain select apps to the IVI screen. The focus
of Android Auto is to offer multimedia and navigation apps
with an enhanced UX to reduce distraction of the driver.
Despite its support by all major OEMs (and Apple Carplay) for
most of their models as of 2019, the major drawback of Android
Auto is the lack of having access to any data generated inside
the vehicle. It solely relies on the handset’s sensors and does not
read nor write any data to the in-vehicle network (IVN). As a
result, a full car integration was not possible with Android Auto.

Android’s business model is an extension of the existing
Google business model: Revenue is obtained from Search,

AdSense and the applications that enable these two. In the
case of Android there is also revenue from app sales (Google
Play Store), licensing fees (Google Play Services) as well as
Google Play’s multimedia contents (e.g., Music) [7]. For the
automotive use-case, this is not entirely possible with Android
Auto since no additional data can be leveraged.

This is a reason why Google introduced Android
Automotive at Google I/O 2018. They announced a partner-
ship with a massive car-making alliance of Renault-Nissan-
Mitsubishi to run Android Automotive powered infotainment
systems in millions of cars beginning 2021 [9]. Although car-
makers have been hesitant to share valuable vehicle data with
Google, the latter’s efforts in creating a clean, powerful oper-
ating system tailored to run stand-alone on IVIs has convinced
car-makers to adopt this new technology. A vehicle-specific
Google Play Store will allow third-party apps to be deployed
in numerous vehicles independent of OEM [27] and can
possibly allow car-makers to easily access a share of revenue
with Google. Third-party applications that require IVN access
can range from smart home apps for optimizing customers’
charging management in their home garage to usage-based
insurance (UBI) apps. The latter compute the driving behavior
from a set of sensors, such as speed or braking, to automati-
cally adjust the insurance premium.

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 2

In recent years, wireless connectivity in vehicles has
gained popularity. According to [6], 250M vehicles will
be connected to the Internet of Things (IoTs) by 2020. Existing
connected vehicles’ (CVs’) functionalities comprise infotain-
ment, safety, diagnostics efficiency, navigation and payments
[29]. In the next phase of CVs - which is starting now - cars
will connect to third-party services using a built-in data
connection, introducing novel vehicular data-collection plat-
forms, such as BMW CarData [8]. Already 78M vehicles are
connected to the web, with 98% of all new vehicles sold in the
US and Europe expected to have cellular connections by
2021 [26].

However, all these positive developments come at the
expense of security and privacy risks. Third-parties (and the
platform provider Google) will have access to private/sensitive
data which can be used by malicious entities to infer more
information about the driver of the vehicle. Furthermore,
CAN injection (write access to the IVN) has to be restricted
to OEM apps. For instance, the HVAC app that Google offers
as a native application [1] usually requires to write to the CAN
bus to change fan or temperature settings. Other third-party
apps do not have a reason to write to the IVN, and hence
should be limited to read-only mode.

The goal of this paper is to introduce Google’s Android
Automotive framework based on all of its available documents
and point out both security and privacy threats that this useful
addition to the IVI world can cause. After describing three
potential attacks on Android Automotive-equipped IVIs,
we will discuss possible countermeasures or precautions that
need to be taken by the OEM and Tier 1suppliers to mitigate
the security and privacy risks.

The paper is structured as follows. First, we would like to
review some existing academic work done on Android
Automotive security, as well as point out how IVIs can
be leveraged for automotive security attacks. Then, we will
introduce the Android Automotive architecture as defined by
Google, as well as a primer of the CAN bus to provide insights
into the impact of CAN injection attacks. This will be followed
by an overview of how to analyze the security of Android
Automotive, including the EVITA’s methodology for classi-
fying potential attacks. As part of the security analysis, we will
show three different potential attacks that can be mounted on
an IVI running Android Automotive. Finally, we will discuss
some countermeasures and recommendations for OEMs and
Tier 1s to mitigate the attacks discussed within the threat
model before concluding the paper.

Related Work

Android Automotive
Recently, some research has been done on Android Auto,
mostly focusing on static analysis of the offered infotainment
apps [22]. The main threat emerging from deploying Android
Auto is distraction by using poor user interfaces, which can,
in turn, impact driver safety. The authors of [23] found
JavaScript vulnerabilities in a quarter of all analyzed apps,

claiming that this leaves the infotainment system at serious
risk. They did not analyze if the Android Auto client-side
software on the IVI can gain access to the IVN, so that third-
party Android Auto apps can actually access the car’s data.
The Android Auto specification mandates a gap between the
IVN and Android Auto, partially due to its media- and navi-
gation-based functions, unlike Android Automotive which
needs access to the IVN.

As of now, there are only two major publications on
Android Automotive. [28] proposes a sensing model for vehic-
ular sensor data. It points out how its architecture can
be embedded into the Android Automotive platform as a
proof-of-concept. [13] is a high-level description of Android
Automotive security. It focuses on malicious third-party apps
and their potential impact on safety, security and privacy.
Unlike our work, its focus lies on static and dynamic app
analyses, not a security analysis of the framework. In fact, the
authors developed a tool for vehicle-specific code analysis,
called AutoTame. Their attacks focus on driver disturbance
(by raising the volume of a media app) and availability (forking
an app until it crashes). They also briefly discuss privacy, i.e.,
leakage of sensitive information, through the use of two apps.
Only one app has permission to upload data to the Internet,
whereas the other app can read sensitive sensor information.
Through the means of inter-process communication (IPC),
the app that reads sensitive information can communicate the
sensitive information to the other app that uploads it to the
malicious third-party. For this attack to succeed, the third-
party must have control over both apps, which makes this
attack harder to mount.

IVI Security
The in-vehicle infotainment (IVI) system is a major point of
entry into the vehicle due to its connectivity provided by the
telematic control unit (TCU). As a result, it is a popular attack
vector since wireless surfaces, such as Bluetooth or WiFi, or
wired interfaces, such as the USB port, can be exploited.
Although manufacturers claim that the IVI usually has an air
gap to the in-vehicle network (IVN), it has been shown in [25]
that this is not always true. Once access to the CAN bus - the
dominant IVN technology - has been obtained, it is possible
to perform CAN injection attacks and compromise the func-
tionality of the vehicle, as well as impact the safety of the driver.

Here we focus on CAN bus security. [18] identified that
messages sent on the CAN bus can be easily eavesdropped on,
and injected into the CAN bus since CAN messages are not
encrypted or authenticated. [21] and [24] comprehensively
demonstrated several CAN injection attacks to various
components such as the brakes and engine on different
vehicles. They show that all these attacks require access to the
vehicle’s internal CAN bus and can override several body- and
powertrain-related events.

All of the aforementioned attacks were mounted by
having physical access to the vehicle, usually through the
OBD-II interface. Leveraging the wireless connectivity of
infotainment and telematics platforms, remote attacks are
becoming a reality. In addition, these attacks can be scaled
easier since multiple vehicles can be targeted at the same time.

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 3

This increases the probability of an attack to be mounted and
thus the risk goes up. [10] demonstrated that remote vulner-
abilities such as in GM’s OnStar telematic solution would allow
an attacker to gain access to the IVN. Besides leveraging the
cellular interface to access the vehicle, short-range wireless
attack vectors such as Bluetooth have also been evaluated. In
the famous Jeep hack [25], two researchers staged a remote
attack over the cellular network by compromising a software
vulnerability in the IVI. Another use of cellular interfaces as
point of entry into the vehicle was discussed in [14] when
researchers crafted SMS messages to exploit an aftermarket
dongle connecting to a vehicle via the standardized OBD-II
port. [16] exposed vulnerabilities in the GM OnStar app that
allowed unauthenticated API calls. The attack was only limited
to sending CAN messages that were predefined by the OnStar
app. Arbitrary CAN injection was impossible.

All attacks reported so far can be categorized into two
generations as depicted in Fig. 1. The first generation of auto-
motive attacks required a physical connection whereas most
IVI attacks so far were exploiting wireless interfaces and
became popular in research around 2015. More advanced and
standardized IVI platforms such as Android Automotive will
likely lead to the next generation of attacks on vehicles. In
particular, remote attacks leveraging third-party (Android)
apps on IVIs will penetrate more vehicles and lead to larger-
scale attacks.

Threat Model and
Background

Threat Model
Android Automotive marks the start of a new era for IVI
platforms. Google began opening APIs for third-party devel-
opers in May 2019 [15] and encouraged development of multi-
media apps. It was announced in May 2019 that the 2020
model year Polestar 2 EV (manufactured by Volvo) will be the
first vehicle to feature an IVI equipped with Android
Automotive. In October 2019, Volvo unveiled the XC40
Recharge which is also equipped with Android Automotive
[31]. Remote attacks as described in the previous section are
likely to increase with an open third-party developer
ecosystem. As a result, working on the security of the Android
Automotive framework is vital at an early stage. Infrastructure
vulnerabilities such as security f laws in network or OS
components are always possible and will require immediate
response from the security team of the IVI manufacturer
during the lifecycle of the unit. These vulnerabilities can

be easily patched via over-the-air (OTA) updates in the future
and can thus limit serious damage in a short time. Currently,
only a few vehicles other than Tesla offer a fully functional
OTA update process. This is partially due to the cumbersome
integration of existing update solutions into the existing
legacy OS architecture. If an OEM offers multiple IVIs in
different models with different OS, they have to repeat this
integration process which can turn out very tedious. Android
Automotive is based on Android which supports OTA
updates for many years now. The Android Open Source
Project (AOSP) has even introductions for the specific auto-
motive use case which “differs slightly in the Download step
due to support for Garage Mode” [40]. Besides updating the
IVI OS, OTA firmware updates for other ECUs are also
supported according to Google’s documentation.
Aforementioned “Garage Mode” is a low-power mode that a
parked car can use when the ignition off. This enables over-
night OTA updates when the car is in the garage and
connected to the customer’s home WiFi network. Although
Google allows OEMs to also enable USB updates on the IVI,
we highly recommend against this sort of physical update
process due to an increased security risk as depicted in the
past [41]. We can assume that with gradual deployment of
Android Automotive on IVIs, the OTA update process can
be further standardized and made easier to integrate for auto-
motive OEMs along all their future vehicle models.

In comparison, framework design vulnerabilities such as
issues with Android Automotive’s core modules or permission
model are harder to fix after the system has been adapted for
a certain time. This group of vulnerabilities can have a far-
reaching impact and can cause significant disruption in the
future. Hence, an early security framework is beneficial, espe-
cially with the notion that Android-equipped IVIs will hit the
market in the following years.

Unlike static code analysis of Android Automotive apps
(such as the one in [13], this paper is confined to an architec-
ture-level security analysis. We look at the Android architec-
ture itself, especially the vehicle-specific modules that have
been introduced in Android Nougat (7.x). We focus on the
interaction of third-party apps with the underlying Android
Automotive-specific modules. The bottom module where our
inspection ends would be the Vehicle Hardware Abstraction
Layer (VHAL) since this is the module that communicates
with the IVN.

A secure architecture will mitigate most, if not all, of
framework vulnerabilities in our opinion. In what follows,
we will introduce the Android Automotive stack in Google’s
codebase [1], elaborate on the existing permission model for
vehicles, provide a primer on the CAN protocol, as well as
discuss the VHAL which is the most critical component in
interfacing with the car.

Overview
Android Automotive is a regular Android build with extra
modules that have been specifically tailored for automotive
apps to interact with the vehicle. We use the Android Oreo
(8.1) branch of Android Automotive codebase for our analysis
that can be found from: https://android.googlesource.com/

 FIGURE 1  Classification of Automotive Attacks

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

https://android.googlesource.com/platform/packages/services/

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 4

platform/packages/services/Car/+/refs/heads/oreo-release.
The main modules are listed as follows:

 • platform/packages/services/Car

 • hardware/libhardware/include/hardware/vehicle.h

 • hardware/libhardware/modules/vehicle/vehicle.c

The system architecture of the Android Oreo branch (it
is getting revamped significantly in newer flavors Android Pie
and 10) is depicted in Fig. 2. It consists of three layers of
modules. On the top layers, we have Android apps (APK) that
can be categorized into native (manufacturer-provided) and
third-party apps. Native apps are provided by Google (e.g., the
HVAC app), but can be overridden by the OEM to offer custom-
ized builds. Third-party apps can be downloaded in the future
from the vehicle-specific Play Store that is planned to be offered
by Google. Examples of those apps can be usage-based insur-
ance (UBI) apps such as Progressive Snapshot as mentioned
earlier. Each app interacts with its CarManager component
that is part of the SDK layer. Think of these components as
APIs that are available to the apps to interact with the vehicle.
Each CarManager module talks to a CarService component.
Android Oreo defines certain instances of the latter, e.g.,
CarHvacService for the HVAC app or CarSensorService for
third-party apps that read certain sensors from the IVN. This
component of the SDK can be regarded as a security middle-
ware where access control is defined, i.e., permissions are
checked for that specific app. The permission model will
be detailed later. If an app is allowed to communicate with the
IVN, it will finally pass a final layer, the Vehicle Hardware
Abstraction Layer (VHAL) that is part of the NDK. The VHAL
is responsible for mapping vehicle properties (Google-specified
signals that shall be supported by any vehicle, extendable by
the vendor) to CAN signals defined in the vehicle’s DBC file.
Eventually, the VHAL reads from, or writes to the IVN, e.g.,
the CAN bus. Please note that other IVN technologies, such
as Automotive Ethernet, are also possible. In the following,
we will assume that the IVN consists of CAN buses.

Permission Model
Android permissions are divided into four protection levels [2]:

 • Normal: Normal permissions result in minimal risk to
the user’s privacy. If an app declares in its manifest that

it needs a normal permission, the system automatically
grants the app that permission at installation time
without any explicit confirmation. Users cannot revoke
these permissions.

 • Dangerous: Dangerous permissions are defined if the
user’s private information has to be accessed. If an app
declares that it needs a dangerous permission, the user
has to explicitly grant the permission to the app at
installation time and/or its first launch. The app might
degrade or not work at all if these permissions are
not granted.

 • Signature: The system grants these app permissions at
installation time, but only when the app is signed by the
same certificate as the app that defines the permission.
In the automotive domain, only OEM-native apps can
use signature permissions.

 • signature|privileged: These permissions are granted to
either cryptographically signed (see signature above) or
preinstalled apps.

All vehicle-specific permissions are defined in package
android.car.permission [33] and summarized in Table 1. Third-
party apps will either use normal or dangerous permissions.
In any case, signature permissions are limited to native (OEM)
apps, i.e., a regular app cannot access HVAC settings or
control body functions such as the seats or windows. Currently,
most permissions are signature or privileged. The only
dangerous permissions at this time that require explicit user
consent are speed and some more information about the
vehicle’s energy state. Nevertheless, several powertrain-related
information, such as gear position or engine speed (RPM) are
available to anyone without explicit permission. Although the
current permission model is relatively strong, it can
be designed more fine-grained as we will discuss later.
Furthermore, while writing this paper, we encountered several
iterations of the permission model, and hence assume that
changes in the near future are unavoidable.

CAN Primer
Vehicular sensor data is collected from ECUs that are typically
interconnected via an in-vehicle network (IVN), with the
CAN bus being the most dominant technology in current
vehicles. Fig. 3 depicts the structure of a CAN 2.0A data frame:

CAN is a multi-master, message-based broadcast bus
which is message-oriented. Instead of having a source or desti-
nation address, each frame carries a unique message identifier
(ID) that represents its meaning and priority. Lower CAN IDs
have higher priority and will “win” the distributed arbitration
process that occurs when multiple messages are sent on the
CAN bus at the same time. The basic CAN ID in the CAN
2.0A specification is 11 bits long and thus allows for up to 2048
different CAN IDs. Data in a CAN frame (called payload) can
be up to 8 bytes long.

Next, we will describe the structure of the data payload
field, which consists of one or more signals. A signal is a piece
of information transmitted by an ECU, such as vehicle speed.
For instance, a message targeted for the Transmission Control
Module (TCM) might contain both the vehicle speed (m/s)

 FIGURE 2  Android Automotive System Architecture

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

https://android.googlesource.com/platform/packages/services/

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 5

and engine speed (RPM) signals in one CAN message. The
length and number of signals vary from CAN ID to CAN ID
and are defined in the DBC file for that specific vehicle. This
translation file is proprietary to the OEM and usually specific
to a model generation. It specifies the start position and length
of a signal, so it can be easily retrieved from the payload and
mapped to a context.

All recorded CAN data can only be interpreted if one
possesses the translation tables for the target vehicle. There
are multiple standards for those tables, such as KCF [20] and
ARXML [5]. However, the most common format used for
this purpose is the aforementioned DBC [12], a standard
created by German automotive supplier company
Vector Informatik.

Vehicle Hardware Abstraction
Layer (VHAL)
The Vehicle Hardware Abstraction Layer (VHAL) is a vendor-
extendable Android Automotive module which abstracts
vehicle data from the IVN to higher-layer components (see
Fig. 2). Google provides a list of VHAL properties [32] that
shall be supported by all vehicles implementing Android
Automotive. Examples of these properties are listed as follows:

 • HVAC Controls

 • Vehicle Information (e.g., make, model, year, etc.)

 • Powertrain-related data (e.g.., speed, RPM, etc.)

 • Body-related data (e.g., windows, seats)

 • Driver Safety (e.g., ABS)

 • Diagnostic data (e.g., OBD-II DTCs)

 • IVI-related data (e.g., display brightness).

Each property can be conf igured with the
following attributes:

 • Access Type (read/write)

 • Change Mode (on change, continuous, polling, static)

 • Area Type (global, zoned)

 • Min/Max Values

 • Min/Max Sampling Rate (for continuous properties).

Properties can be accessed using get, set and subscribe
functions according to their protection level defined in

TABLE 1 Permissions defined in Android Automotive
(android.car.permission)

Permission Name Protection Level
READ_CAR_DISPLAY_UNITS Normal

CONTROL_CAR_DISPLAY_UNITS Normal

CAR_ENERGY_PORTS Normal

CAR_INFO Normal

CAR_EXTERIOR_ENVIRONMENT Normal

CAR_POWERTRAIN Normal

CAR_SPEED Dangerous

CAR_ENERGY Dangerous

BIND_VMS_CLIENT Signature

BIND_PROJECTION_SERVICE Signature

BIND_INSTRUMENT_CLUSTER_
RENDERER_SERVICE

Signature

BIND_CAR_INPUT_SERVICE Signature

CAR_MOCK_VEHICLE_HAL signature|privileged

READ_CAR_STEERING signature|privileged

CAR_IDENTIFICATION signature|privileged

CAR_MILEAGE signature|privileged

CAR_TIRES signature|privileged

CAR_ENGINE_DETAILED signature|privileged

CAR_DYNAMICS_STATE signature|privileged

CAR_VENDOR_EXTENSION signature|privileged

CAR_PROJECTION signature|privileged

ACCESS_CAR_PROJECTION_STATUS signature|privileged

CONTROL_CAR_SEATS signature|privileged

CONTROL_CAR_MIRRORS signature|privileged

CONTROL_CAR_WINDOWS signature|privileged

CONTROL_CAR_DOORS signature|privileged

CONTROL_CAR_CLIMATE signature|privileged

CAR_EXTERIOR_LIGHTS signature|privileged

CONTROL_CAR_EXTERIOR_LIGHTS signature|privileged

READ_CAR_INTERIOR_LIGHTS signature|privileged

CONTROL_CAR_INTERIOR_LIGHTS signature|privileged

CAR_POWER signature|privileged

CAR_NAVIGATION_MANAGER signature|privileged

CAR_DIAGNOSTICS signature|privileged

CLEAR_CAR_DIAGNOSTICS signature|privileged

VMS_PUBLISHER signature|privileged

VMS_SUBSCRIBER signature|privileged

CAR_DRIVING_STATE signature|privileged

CONTROL_APP_BLOCKING signature|privileged

CAR_CONTROL_AUDIO_VOLUME signature|privileged

CAR_CONTROL_AUDIO_SETTINGS signature|privileged

RECEIVE_CAR_AUDIO_DUCKING_
EVENTS

signature|privileged

CAR_INSTRUMENT_CLUSTER_
CONTROL

signature|privileged

CAR_HANDLE_USB_AOAP_DEVICE signature|privileged

CAR_UX_RESTRICTIONS_
CONFIGURATION

signature|privileged

STORAGE_MONITORING signature|privileged

CAR_ENROLL_TRUST signature|privileged

 FIGURE 3  CAN Data Frame Structure

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 6

Android Automotive’s permission model as described before.
The OEM/vendor is responsible for mapping the supported
properties to the associated vehicle signals. Properties are
usually mapped to CAN signals defined in a DBC (or a selec-
tion of it) which can be stored on the IVI. As a result, proper-
ties will be transparent to all third-party app developers, i.e.,
anyone can create an app using the available properties
without having to know the vehicle architecture. Google has
also provided a method for vendors to extend the AOSP
VHAL and add their own vendor-specific properties. These
properties are tagged as vendor properties and reside in a
specific ID range provided by Google. These properties will
not be made public and can only be accessed by vendor
services/apps via the CarVendorExtensionService. Most prop-
erties are read-only and have get methods implemented. Set
methods are usually reserved for properties that are covered
by signature|privileged permissions and are thus only usable
by OEM/vendor apps.

EVITA Methodology
The objective of EVITA, a project co-funded by the European
Union within the Seventh Framework Programme for
Research and Technological Development, is to design, to
verify, and to prototype building blocks for secure automo-
tive on-board networks protecting security-relevant compo-
nents against tampering and sensitive data against compro-
mise. [17] outlines the process of analyzing the security
requirements for automotive on-board networks. It intro-
duced a way to calculate the risk of an attack path based on
attack probability and severity. According to EVITA, the
severity of an attack is considered in terms of safety, privacy,
financial and operational security threats that may be associ-
ated with harm to the stakeholders. Safety severity can range
from no injuries to life-threatening or fatal injuries. Privacy
severity ranges from no unauthorized access to data to
vehicle/driver tracking for multiple vehicles. Financial
severity ranges from no financial loss to heavy losses for
multiple vehicles. Finally, operational severity ranges from
no impact on operational performance to significant impact
for multiple vehicles. In what follows, we will introduce three
theoretical attacks derived from the aforementioned severity
categories. Financial and operational attacks will be merged
into one category.

As mentioned in the threat model, we will analyze the
system architecture of the platform. Although Google did a
thorough job at implementing security countermeasures,
such as access control and permission model to prevent poten-
tially malicious third-party apps mounting serious attacks
on the vehicle, we would still like to analyze if such a mali-
cious app can perform damage as defined in the EVITA meth-
odology. For now, it appears that the separation of apps into
native and third-party apps with a proper permission model
will prevent any malicious entities from gaining arbitrary
write access to vehicle components. Nevertheless, there still
remains room for improvement as the proposed security
mechanisms are not yet fool-proof. Three theoretical attacks
are described in the following section. Attack #1 focuses on

compromising driver privacy, i.e., obtaining vehicular sensor
data that should be restricted. Attack #2 shows how financial
and operational damages can be done to the cluster by
breaking it. Finally, Attack #3 depicts how driver safety can
be compromised by distracting the driver, as well as gaining
access to DBC files which can then be leveraged for direct
CAN injection attacks.

Possible Attacks

Attack #1: Privacy
The first attack revolves around compromising driver privacy
by leaking privacy-sensitive information. Imagine a third-
party app that has access to the engine speed (RPM) as well
as gear position. According to the permission model of
Android Automotive, these are normal permissions, i.e., any
app can obtain them without explicit user consent. In
contrast, vehicle speed is labeled as a dangerous permission.
The driver has to explicitly approve the collection of this
sensor data on first start of a third-party app. Speed, RPM
and gear position share a physical relationship [34]. If both
RPM and gear position are known, it is easy to calculate the
vehicle speed. Although there is no closed-form equation,
with a sufficient amount of collected data, inferring vehicle
speed is relatively straightforward. As a result, a sensor with
dangerous permission can be inferred by an unprivileged
third-party app. This should not happen, especially since
vehicle speed contains very sensitive information about the
driver and can be abused if it is in the wrong hands. As
academic research results [11, 30] show, it is even possible to
derive the GPS location (comes also with a dangerous permis-
sion in Android) from speed. This enables driver location
tracking, a grave privacy leakage that has to be avoided at all
cost. There may be more physical relationships that can
be exploited to show even further privacy leakage. This is
something that can be part of future work.

Attack #2: Financial/
Operational
This attack describes how both financial and operational
damages can be inflicted to the vehicle/driver. Our goal for
this attack is to break the cluster. Breaking other units such
as the HVAC is impossible with the current security mecha-
nisms since only native apps have access to those permissions.
As depicted in Table 1, the protection level for CONTROL_
CAR_DISPLAY_UNITS is normal, i.e., accessible to any
unprivileged third-party app. According to [33], this permis-
sion allows an application to control the display units for
distance, fuel, tire pressure, EV battery and fuel consumption
which are displayed on the cluster that is being controlled by
the IVI. For instance, a malicious third-party app can
be instructed to switch from minimal to maximal fuel level
at set intervals. From Android Automotive’s design docu-
ments, the maximum frequency that we can perform this with
stands at 1 Hz. As a result, we can force an analog instrument

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 7

gauge indicating the fuel level on the cluster to alternate
between both ends of its range once per second which will
eventually break the needle. This results in (minor) financial
damage, as the car owner has to get the cluster repaired.
Furthermore, this can cause operational damage as well, as
the cluster will not be able to display the correct fuel level to
the driver. Even if the potential damage is minor, there is no
reason why a third-party app should be able to control the
cluster. Since CONTROL_CAR_DISPLAY_UNITS is zero-
permission, any useful app can hide this malicious intent
without disclosing it to the driver.

Attack #3: Safety
The last attack will compromise the driver’s safety and thus
needs to be avoided at all cost. The same aforementioned
attack to cause financial and operational damages can also
lead to driver distraction. A continuous switching of cluster
units will confuse the driver initially which could potentially
lead to an accident.

Finally, we will present an attack on driver safety by
exploiting possible wrong design choices of the IVI vendor
which can lead to arbitrary CAN injection --- the worst-case
scenario. Note that this attack is not specifically a vulnera-
bility of Android Automotive, but more a possible implemen-
tation flaw. As discussed before, the VHAL mapping table is
part of the Android Automotive firmware deployed on the
IVI. A change to this mapping table can cause unseen
behavior. Let us assume that the attacker knows the CAN
signal to accelerate the vehicle (e.g., the gas pedal position
which has been shown to perform this safety-critical attack).
They could have obtained it by manually reverse engineering
this specific signal on another target vehicle or using auto-
mated reverse engineering tools for vehicles [35]. If complete
or partial DBC files for the target vehicle are included as part
of the system firmware and the attacker obtains access to the
firmware, they can reverse-engineer it and have access to the
mapping table and thus DBC files. With this knowledge, a
benign command, such as displaying a value on the cluster,
can be exchanged with a more malicious command, such as
accelerating the vehicle. Once recompiled and reflashed on
the victim’s vehicle, the latter will seriously misbehave while
displaying cluster units, as acceleration of the vehicle will
be forced. This is very dangerous to the driver. Another
possible way to perform this attack is to obtain remote code
execution on the target IVI. If the attacker can run the shell
as a root user (e.g., by accessing the ADB shell over the IVI’s
USB port or WiFi), they can modify the VHAL mapping table
by overwriting the DBC file which results in the same effect
as described above. In order to prevent this attack, simple
countermeasures, such as signing the firmware or blocking
shell access by open debug interfaces, is sufficient.
Unfortunately, adhering to those basic security principles has
been inconsistent in the automotive industry, such as in the
famous Jeep hack [25]. Furthermore, using DBC files for
VHAL mapping in general can also be rethought, since a
leakage of those proprietary translation tables are not in the
best interest of the OEMs and can be used for physical CAN
injection attacks.

Recommendations
Based on our observations, we would like to summarize some
recommendations which we would like to make to Google as
the platform provider, as well as OEMs and Tier 1s that are in
charge of integrating Android Automotive into their IVIs:

 • Fine-grained permission model: Although we found
that the permission model of Android Automotive is
constantly evolving, the current version (see Table 1) is
still too coarse-grained which can lead to privacy
leakage. In particular, multiple properties are
summarized in one permission (e.g., CAR_
POWERTRAIN). A possible way to both extend and
separate permissions are to assign a unique permission
to each property. Furthermore, [42] provides a privacy
score that quantifies the privacy risk of 20 typical
vehicular sensors. Based on this metric, it is also possible
to define dangerous and normal permissions.

 • Further standardization from Google: Currently, many
security-critical functions (such as the DBC mapping)
are not specified by Google. As a result, OEMs and Tier
1s are free to design specific components on their own.
Unfortunately, the risk of lacking a secure design and
implementation for these components is imminent as
we demonstrated. We believe that Google as the platform
provider should be responsible for suggesting or
standardizing security recommendations. In the case of
DBC mapping, OEMs and Tier 1s should at no point
include (plain text) DBC files in the firmware image. One
possible option is to “hard-code” a lookup table and
offload the mapping task to Trusted Execution
Environment (TEE) so that the code with the lookup
table is protected with respect to confidentiality
and integrity.

 • Separation of domains in IVN architecture: Usually,
the IVI is part of a dedicated “Infotainment CAN” which
is connected to other CAN buses such as “Powertrain
CAN” or “Body CAN” via a gateway module. The easiest
and most efficient way to prevent CAN injection attacks
is to move safety-critical domains such as the powertrain
modules on a different CAN bus is to implement some
sort of access control (e.g., whitelisting) or firewall in the
gateway [39]. As a result of this, a compromised IVI will
not be able to write to safety-critical areas. From our
understanding, vehicular gateways in IVN architectures
are not mandatory and some OEMs might want to
continue without a gateway at all, primarily due to
cost [36].

 • Protection against runtime attacks: Since Android
Automotive is based on the mature Android platform,
we assume that the IVI OS comes with existing
countermeasures. Nevertheless, Return-Oriented
Programming (ROP) attacks can still occur where an
attacker gains control of the call stack of an Android app.
This can be done by a malicious third-party app for
instance and lead to a buffer overflow on the IVI. [37]
shows that despite a recent change from Dalvik to the
more secure Android Runtime (ART), ROP threats still
exist. Countermeasures have been proposed, such as

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 8

in [38]. Nevertheless, the code written in C/C++ (device
drivers, etc.) is most vulnerable to runtime attacks.
Vendors (OEMs and Tier 1s) write a majority of these
components themselves to accomplish vehicle-specific
functionality. This code should be scrutinized heavily
(relative to the Java layer). Furthermore, we discussed the
possibility to execute an ADB shell in Attack #3. A good
practice to avoid this is to disable USB debugging by
default so the attacker cannot get authorized to launch an
ADB shell or use other ADB functionalities. Since it is also
possible to connect to ADB remotely over WiFi,
developers have to think of restricting this attack surface
as well. Even if the ADB shell can be accessed through
USB or WiFi, it should be impossible to be ran as root user
by default. This is controlled by a flag in the boot partition.

Summary/Conclusions
We conducted a first high-level security analysis of the
emerging Android Automotive platform. We described its
system architecture and discussed how automotive attacks
can be scaled under a new threat model compared to previous
generations of security exploits in vehicles. In particular,
we discussed the newly introduced vehicle-specific Android
permissions under the current permission model and found
that it is still too coarse-grained and needs improvement.
We showed its vulnerabilities through three theoretical
attacks and presented possible mitigations. Furthermore,
we showed how a bad implementation of the framework can
compromise driver safety. Recommendations for a more
secure design are presented. Nevertheless, the proposed
security mechanisms of Android Automotive are promising.
Since the framework is constantly evolving and first produc-
tion units that leverage the full functionality of it are yet to
be released, we are confident that the issues described in this
paper can be addressed and incorporated into future versions
of Android Automotive.

References
 1. [n.d.], https://android.googlesource.com/platform/packages/

apps/Car/Hvac/refs/heads/master.
 2. [n.d.], https://developer.android.com/guide/topics/

permissions/overview.
 3. [n.d.], https://ibotpeaches.github.io/Apktool/.
 4. [n.d.], http://craig.backfire.ca/pages/autos/transmissions.
 5. AUTOSAR XML Schema, n.d., https://automotive.wiki/

index.php/AUTOSAR_XML_Schema.
 6. “Gartner Says By 2020, a Quarter Billion Connected Vehicles

Will Enable New In-Vehicle Services and Automated Driving
Capabilities,” n.d., https://www.gartner.com/newsroom/
id/2970017.

 7. “Android Economics: An Introduction,” 2012, http://www.
asymco.com/2012/05/13/android-economics-an-
introduction/.

 8. “BMW Group Launches BMW CarData: New and Innovative
Services for Customers, Safely and Transparently,” 2017,
https://www.press.bmwgroup.com/global/article/detail/
T0271366EN/bmwgroup-launches-bmw-cardata:-new-and-
innovative-services-for-customerssafely-and-
transparently?language=en.

 9. “Google Just Struck a Deal with a Major Auto Alliance to
Run Android on Millions of Future Cars,” 2018, https://
www.androidpolice.com/2018/09/18/googleandroid-
infotainment-renault-nissan-mitsubishi/.

 10. Checkoway, S., McCoy, D., Kantor, B., Anderson, D. et al.,
“Comprehensive Experimental Analyses of Automotive
Attack Surfaces,” in USENIX Security Symposium, San
Francisco, 2011, Vol. 4, 447-462.

 11. Dewri, R., Annadata, P., Eltarjaman, W., and Thurimella, R.,
“Inferring Trip Destinations from Driving Habits Data,” in
Proceedings of the 12th ACM Workshop on Privacy in the
Electronic Society, ACM, 2013, 267-272.

 12. CSS Electronics, “CAN DBC File - Convert Data in Real
Time (Wireshark, J1939),” n.d., https://www.csselectronics.
com/screen/page/dbc-database-can-busconversion-
wireshark-j1939-example/language/en.

 13. Eriksson, B., Groth, J., and Sabelfeld, A., “On the Road with
Third-Party Apps: Security Analysis of an In-Vehicle App
Platform,” in Proc. 5th Int. Conf. Vehicle Technology and
Intelligent Transport Systems (VEHITS), 2019, 64-75.

 14. Foster, I., Prudhomme, A., Koscher, K., and Savage, S., “Fast
and Vulnerable: A Story of Telematic Failures,” in 9th
{USENIX} Workshop on Offensive Technologies ({WOOT}
15), 2015.

 15. Ganz, A., “Google Opens Its Android Infotainment
Operating System to Third-Party Apps,” 2019, https://www.
motorauthority.com/news/1122899_googleopens-its-
android-infotainment-operating-system-to-third-party-
apps.

 16. Greenberg, A., “This Gadget Hacks GM Cars to Locate,
Unlock, and Start Them (UPDATED),” 2017, https://www.
wired.com/2015/07/gadget-hacks-gm-carslocate-unlock-
start/.

 17. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y. et al.,
“Security Requirements for Automotive On-Board
Networks,” in 2009 9th International Conference on
Intelligent Transport Systems Telecommunications (ITST),
IEEE, 2009, 641-646.

 18. Hoppe, T. and Dittman, J., “Sniffing/Replay Attacks on CAN
Buses: A Simulated Attack on the Electric Window Lift
Classified Using an Adapted CERT Taxonomy,” in
Proceedings of the 2nd Workshop on Embedded Systems
Security (WESS), 2007, 1-6.

 19. Java-Decompiler, “java-decompiler/jd-gui,” 2019, https://
github.com/javadecompiler/jd-gui.

 20. Julietkilo, “julietkilo/kcd,” 2017, https://github.com/
julietkilo/kcd.

 21. Koscher, K., Czeskis, A., Roesner, F., Patel, S. et al.,
“Experimental Security Analysis of a Modern Automobile,”
in 2010 IEEE Symposium on Security and Privacy, IEEE,
2010, 447-462.

 22. Mandal, A.Kr., Cortesi, A., Ferrara, P., Panarotto, F. et al.,
“Vulnerability Analysis of Android Auto Infotainment

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

https://android.googlesource.com/platform/packages/apps/Car/Hvac/refs/heads/master
https://android.googlesource.com/platform/packages/apps/Car/Hvac/refs/heads/master
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://ibotpeaches.github.io/Apktool/
http://craig.backfire.ca/pages/autos/transmissions
https://automotive.wiki/index.php/AUTOSAR_XML_Schema
https://automotive.wiki/index.php/AUTOSAR_XML_Schema
https://www.gartner.com/newsroom/id/2970017
https://www.gartner.com/newsroom/id/2970017
http://www.asymco.com/2012/05/13/android-economics-an-introduction/
http://www.asymco.com/2012/05/13/android-economics-an-introduction/
http://www.asymco.com/2012/05/13/android-economics-an-introduction/
https://www.press.bmwgroup.com/global/article/detail/T0271366EN/bmwgroup-launches-bmw-cardata:-new-and-innovative-services-for-customerssafely-and-transparently?language=en
https://www.press.bmwgroup.com/global/article/detail/T0271366EN/bmwgroup-launches-bmw-cardata:-new-and-innovative-services-for-customerssafely-and-transparently?language=en
https://www.press.bmwgroup.com/global/article/detail/T0271366EN/bmwgroup-launches-bmw-cardata:-new-and-innovative-services-for-customerssafely-and-transparently?language=en
https://www.press.bmwgroup.com/global/article/detail/T0271366EN/bmwgroup-launches-bmw-cardata:-new-and-innovative-services-for-customerssafely-and-transparently?language=en
https://www.androidpolice.com/2018/09/18/googleandroid-infotainment-renault-nissan-mitsubishi/
https://www.androidpolice.com/2018/09/18/googleandroid-infotainment-renault-nissan-mitsubishi/
https://www.androidpolice.com/2018/09/18/googleandroid-infotainment-renault-nissan-mitsubishi/
https://www.csselectronics.com/screen/page/dbc-database-can-busconversion-wireshark-j1939-example/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-busconversion-wireshark-j1939-example/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-busconversion-wireshark-j1939-example/language/en
https://www.motorauthority.com/news/1122899_googleopens-its-android-infotainment-operating-system-to-third-party-apps
https://www.motorauthority.com/news/1122899_googleopens-its-android-infotainment-operating-system-to-third-party-apps
https://www.motorauthority.com/news/1122899_googleopens-its-android-infotainment-operating-system-to-third-party-apps
https://www.motorauthority.com/news/1122899_googleopens-its-android-infotainment-operating-system-to-third-party-apps
https://www.wired.com/2015/07/gadget-hacks-gm-carslocate-unlock-start/
https://www.wired.com/2015/07/gadget-hacks-gm-carslocate-unlock-start/
https://www.wired.com/2015/07/gadget-hacks-gm-carslocate-unlock-start/
https://github.com/javadecompiler/jd-gui
https://github.com/javadecompiler/jd-gui
https://github.com/julietkilo/kcd
https://github.com/julietkilo/kcd

SECURITY ANALYSIS OF ANDROID AUTOMOTIVE 9

Apps,” in Proceedings of the 15th ACM International
Conference on Computing Frontiers, ACM, 2018, 183-190.

 23. Mandal, A.K., Panarotto, F., Cortesi, A., Ferrara, P. et al.,
“Static Analysis of Android Auto Infotainment and On-
Board Diagnostics II Apps,” Software: Practice and
Experience 2019, 2019.

 24. Miller, C. and Valasek, C., “Adventures in Automotive
Networks and Control Units,” Def Con 21(2013):260-
264, 2013.

 25. Miller, C. and Valasek, C., “Remote Exploitation of an
Unaltered Passenger Vehicle,” Black Hat USA
2015(2015):91, 2015.

 26. Pymnts, “Who Controls Data in Web-Connected Vehicles?,”
2018, https://www.pymnts.com/innovation/2018/data-
sharing-smart-cars-privacy/.

 27. Ryan.whitwam, “For Google, It’s Full Speed Ahead with
Android Automotive, But Not So Much with Android Auto,”
2018, https://www.androidpolice.com/2018/05/14/google-
full-speed-ahead-android-automotive-not-much-android-
auto/.

 28. Sadio, O., Ngom, I., and Lishou, C., “A Novel Sensing as a
Service Model Based on SSN Ontology and Android
Automotive,” IEEE Sensors Journal, 2019.

 29. Walford, L., “Definition of Connected Car - What Is the
Connected Car? Defined,” 2018, http://www.
autoconnectedcar.com/definition-of-connected-carwhat-is-
the-connected-car-defined/.

 30. Zhou, L., Chen, Q., Luo, Z., Zhu, H. et al., Speed-Based
Location Tracking in Usage-Based Automotive Insurance,”
in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), IEEE, 2017, 2252-2257.

 31. Korosec, K., “Volvo Unveils Its First Electric Car, the XC40
Recharge,” TechCrunch, Oct. 16, 2019, https://techcrunch.
com/2019/10/16/volvo-unveils-its-first-electric-car-the-xc40-
recharge/.

 32. Android Developers, “VehiclePropertyIds: Android
Developers,” https://developer.android.com/reference/
android/car/VehiclePropertyIds, accessed Oct. 29, 2019.

 33. Google Git, “Service/AndroidManifest.xml - Platform/
Packages/Services/Car - Git at Google,” https://android.
googlesource.com/platform/packages/services/Car//master/
service/AndroidManifest.xml, accessed Oct. 29, 2019.

 34. “Transmissions - Craig’s Website at Backfire.ca,” http://craig.
backfire.ca/pages/autos/transmissions, accessed Oct.
29, 2019.

 35. Pesé, M.D., Stacer, T., Campos, C.A., Newberry, E. et al.,
“LibreCAN: Automated CAN Message Translator,” 2019.

 36. “Diagnostic Link Connector Security,” https://doi.
org/10.4271/J3138_201806.

 37. Raja, A.V., Lee, J., and Gao, D., “On Return Oriented
Programming Threats in Android Runtime,” in 2017 15th
Annual Conference on Privacy, Security and Trust (PST),
IEEE, 2017, 259-2598.

 38. Parikh, V. and Mateti, P., “ASLR and ROP Attack Mitigations
for ARM-Based Android Devices,” in International
Symposium on Security in Computing and Communication
(Singapore, Springer, 2017), 350-363.

 39. Pesé, M.D., Schmidt, K., and Zweck, H., “Hardware/Software
Co-Design of an Automotive Embedded Firewall,” SAE
Technical Paper 2017-01-1659, 2017.

 40. Android Open Source Project, “Over-the-Air Updates:
Android Open Source Project,” https://source.android.com/
devices/automotive/security/ota#android-otas, accessed Dec.
29, 2019.

 41. Lin, T. and Chen, L., “Common Attacks against Car
Infotainment Systems,” July 2019, https://events19.
linuxfoundation.org/wp-content/uploads/2018/07/ALS19-
Common-Attacks-Against-Car-Infotainment-Systems.pdf.

 42. Pesé, M. and Shin, K., “Survey of Automotive Privacy
Regulations and Privacy-Related Attacks,” SAE Technical
Paper 2019-01-0479, 2019, https://doi.org/10.4271/2019-01-
0479.

Contact Information
Mert D. Pesé, M.Sc.
University of Michigan
4956 Beyster Building, 2260 Hayward St. Ann Arbor,
MI 48109-2121, U.S.A.
mpese@umich.edu

Kang G. Shin, Ph.D.
University of Michigan
4605 Beyster Building, 2260 Hayward St. Ann Arbor,
MI 48109-2121, U.S.A.
kgshin@umich.edu

Josiah Bruner, B.S.
Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30318, U.S.A.
jsbruner@gatech.edu

Amy Chu, B.S.
Harman International
30001 Cabot Dr, Novi, MI 48377, U.S.A.
Amy.Chu@harman.com

Acknowledgments
I would like to thank Harman International for their support
during my summer internship. It was a very creative learning
environment for me to dig into a novel research area such as
Android Automotive. More specifically, I would like to thank
my mentors Josiah Bruner, Ravi Tamilarasan and Ben Jones,
my manager Amy Chu, as well as the folks at TowerSec Israel,
Golan Yosef and Asaf Atzmon who contributed with their
valuable feedback.

Definitions/Abbreviations
IVI - In-vehicle infotainment
OEM - Original Equipment Manufacturer
IVN - In-vehicle network
CAN - Controller Area Network
TCU - Telematic Control Unit

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

https://www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy
https://www.pymnts.com/innovation/2018/data-sharing-smart-cars-privacy
https://www.androidpolice.com/2018/05/14/google-full-speed-ahead-android-automotive-not-much-android-auto/
https://www.androidpolice.com/2018/05/14/google-full-speed-ahead-android-automotive-not-much-android-auto/
https://www.androidpolice.com/2018/05/14/google-full-speed-ahead-android-automotive-not-much-android-auto/
http://www.autoconnectedcar.com/definition-of-connected-carwhat-is-the-connected-car-defined/
http://www.autoconnectedcar.com/definition-of-connected-carwhat-is-the-connected-car-defined/
http://www.autoconnectedcar.com/definition-of-connected-carwhat-is-the-connected-car-defined/
https://techcrunch.com/2019/10/16/volvo-unveils-its-first-electric-car-the-xc40-recharge/
https://techcrunch.com/2019/10/16/volvo-unveils-its-first-electric-car-the-xc40-recharge/
https://techcrunch.com/2019/10/16/volvo-unveils-its-first-electric-car-the-xc40-recharge/
https://developer.android.com/reference/android/car/VehiclePropertyIds
https://developer.android.com/reference/android/car/VehiclePropertyIds
https://android.googlesource.com/platform/packages/services/Car//master/service/AndroidManifest.xml
https://android.googlesource.com/platform/packages/services/Car//master/service/AndroidManifest.xml
https://android.googlesource.com/platform/packages/services/Car//master/service/AndroidManifest.xml
http://craig.backfire.ca/pages/autos/transmissions
http://craig.backfire.ca/pages/autos/transmissions
https://doi.org/10.4271/J3138_201806
https://doi.org/10.4271/J3138_201806
https://www.sae.org/publications/technical-papers/content/2017-01-1659
https://source.android.com/devices/automotive/security/ota#android-otas
https://source.android.com/devices/automotive/security/ota#android-otas
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/ALS19-Common-Attacks-Against-Car-Infotainment-Systems.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/ALS19-Common-Attacks-Against-Car-Infotainment-Systems.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2018/07/ALS19-Common-Attacks-Against-Car-Infotainment-Systems.pdf
https://www.sae.org/publications/technical-papers/content/2019-01-0479
https://doi.org/10.4271/2019-01-0479
https://doi.org/10.4271/2019-01-0479
mpese@umich.edu
kgshin@umich.edu
jsbruner@gatech.edu
Amy.Chu@harman.com

© 2020 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE International.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work lies
solely with the author(s).

ISSN 0148-7191

 10 SECURITY ANALYSIS OF ANDROID AUTOMOTIVE

UBI - Usage-based insurance
RPM - Revolutions per minute, engine speed
EVITA - E-safety vehicle intrusion protected applications
ECU - Electronic Control Unit
CV - Connected Vehicle
HVAC - Heating, Ventilation and Air Conditioning

VHAL - Vehicle Hardware Abstraction Layer
IPC - Inter-Process Communication
TEE - Trusted Execution Environment
ROP - Return-Oriented Programming
ART - Android Runtime
ADB - Android Developer Bridge

Downloaded from SAE International by Mert D. Pese, Thursday, April 02, 2020

	10.4271/2020-01-1295: Abstract
	Introduction
	Related Work
	Android Automotive
	IVI Security

	Threat Model and Background
	Threat Model
	Overview
	Permission Model
	CAN Primer
	Vehicle Hardware Abstraction Layer (VHAL)

	EVITA Methodology
	Possible Attacks
	Attack #1: Privacy
	Attack #2: Financial/Operational
	Attack #3: Safety

	Recommendations
	Summary/Conclusions

	References
	Acknowledgments

