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Abstract

In-vehicle infotainment (IVI) platforms are getting increas-
ingly connected. Besides OEM apps and services, the next 
generation of IVI platforms are expected to offer integra-

tion of third-party apps. Under this anticipated business 
model, vehicular sensor and event data can be collected and 
shared with selected third-party apps. To accommodate this 
trend, Google has been pushing towards standardization 
among proprietary IVI operating systems with their Android 
Automotive platform which runs natively on the vehicle’s IVI 
platform. Unlike Android Auto’s limited functionality of 
display-projecting certain smartphone apps to the IVI screen, 
Android Automotive will have access to the in-vehicle 
network (IVN), and will be able to read and share various 
vehicular sensor data with third-party apps. This increased 
connectivity opens new business opportunities for both the 

car manufacturer as well as third-party businesses, but also 
introduces a new attack surface on the vehicle. Therefore, 
Android Automotive must have a secure system architecture 
to prevent any potential attacks that might compromise the 
security and privacy of the vehicle and the driver. In partic-
ular, malicious third-party entities could remotely compro-
mise a vehicle’s functionalities and impact the vehicle safety, 
causing financial and operational damage to the vehicle, as 
well as compromise the driver’s privacy and safety.

This paper presents an Android Automotive system archi-
tecture and provides guidelines for conducting a high-level 
security analysis. It also describes what countermeasures have 
already been taken by Google to prevent potential attacks, and 
discusses what still needs to be done in order to offer a secure 
and privacy-preserving Android experience for next-genera-
tion IVI platforms.

Introduction

Android was launched in late 2008 as a mobile oper-
ating system by Google. While this open-source 
Linux-based platform was initially designed for touch 

screen-equipped mobile phones - dubbed as smartphones - the 
success of this versatile operating system on widely popular 
phones led Google to develop Android versions for TVs and 
smartwatches in the early 2010s. Android’s penetration into 
different markets culminated in the launch of Android Auto 
in 2015, which was also due partially to the introduction of 
touch screens for in-vehicle infotainment (IVI) systems.

Android Auto is an app that runs on mobile handsets and 
once connected to the IVI (over USB, WiFi or Bluetooth 
AVRCP) projects certain select apps to the IVI screen. The focus 
of Android Auto is to offer multimedia and navigation apps 
with an enhanced UX to reduce distraction of the driver. 
Despite its support by all major OEMs (and Apple Carplay) for 
most of their models as of 2019, the major drawback of Android 
Auto is the lack of having access to any data generated inside 
the vehicle. It solely relies on the handset’s sensors and does not 
read nor write any data to the in-vehicle network (IVN). As a 
result, a full car integration was not possible with Android Auto.

Android’s business model is an extension of the existing 
Google business model: Revenue is obtained from Search, 

AdSense and the applications that enable these two. In the 
case of Android there is also revenue from app sales (Google 
Play Store), licensing fees (Google Play Services) as well as 
Google Play’s multimedia contents (e.g., Music) [7]. For the 
automotive use-case, this is not entirely possible with Android 
Auto since no additional data can be leveraged.

This is a reason why Google introduced Android 
Automotive at Google I/O 2018. They announced a partner-
ship with a massive car-making alliance of Renault-Nissan-
Mitsubishi to run Android Automotive powered infotainment 
systems in millions of cars beginning 2021 [9]. Although car-
makers have been hesitant to share valuable vehicle data with 
Google, the latter’s efforts in creating a clean, powerful oper-
ating system tailored to run stand-alone on IVIs has convinced 
car-makers to adopt this new technology. A vehicle-specific 
Google Play Store will allow third-party apps to be deployed 
in numerous vehicles independent of OEM [27] and can 
possibly allow car-makers to easily access a share of revenue 
with Google. Third-party applications that require IVN access 
can range from smart home apps for optimizing customers’ 
charging management in their home garage to usage-based 
insurance (UBI) apps. The latter compute the driving behavior 
from a set of sensors, such as speed or braking, to automati-
cally adjust the insurance premium.
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In recent years, wireless connectivity in vehicles has 
gained popularity. According to [6], 250M vehicles will 
be connected to the Internet of Things (IoTs) by 2020. Existing 
connected vehicles’ (CVs’) functionalities comprise infotain-
ment, safety, diagnostics efficiency, navigation and payments 
[29]. In the next phase of CVs - which is starting now - cars 
will connect to third-party services using a built-in data 
connection, introducing novel vehicular data-collection plat-
forms, such as BMW CarData [8]. Already 78M vehicles are 
connected to the web, with 98% of all new vehicles sold in the 
US and Europe expected to have cellular connections by 
2021 [26].

However, all these positive developments come at the 
expense of security and privacy risks. Third-parties (and the 
platform provider Google) will have access to private/sensitive 
data which can be used by malicious entities to infer more 
information about the driver of the vehicle. Furthermore, 
CAN injection (write access to the IVN) has to be restricted 
to OEM apps. For instance, the HVAC app that Google offers 
as a native application [1] usually requires to write to the CAN 
bus to change fan or temperature settings. Other third-party 
apps do not have a reason to write to the IVN, and hence 
should be limited to read-only mode.

The goal of this paper is to introduce Google’s Android 
Automotive framework based on all of its available documents 
and point out both security and privacy threats that this useful 
addition to the IVI world can cause. After describing three 
potential attacks on Android Automotive-equipped IVIs, 
we will discuss possible countermeasures or precautions that 
need to be taken by the OEM and Tier 1suppliers to mitigate 
the security and privacy risks.

The paper is structured as follows. First, we would like to 
review some existing academic work done on Android 
Automotive security, as well as point out how IVIs can 
be leveraged for automotive security attacks. Then, we will 
introduce the Android Automotive architecture as defined by 
Google, as well as a primer of the CAN bus to provide insights 
into the impact of CAN injection attacks. This will be followed 
by an overview of how to analyze the security of Android 
Automotive, including the EVITA’s methodology for classi-
fying potential attacks. As part of the security analysis, we will 
show three different potential attacks that can be mounted on 
an IVI running Android Automotive. Finally, we will discuss 
some countermeasures and recommendations for OEMs and 
Tier 1s to mitigate the attacks discussed within the threat 
model before concluding the paper.

Related Work

Android Automotive
Recently, some research has been done on Android Auto, 
mostly focusing on static analysis of the offered infotainment 
apps [22]. The main threat emerging from deploying Android 
Auto is distraction by using poor user interfaces, which can, 
in turn, impact driver safety. The authors of [23] found 
JavaScript vulnerabilities in a quarter of all analyzed apps, 

claiming that this leaves the infotainment system at serious 
risk. They did not analyze if the Android Auto client-side 
software on the IVI can gain access to the IVN, so that third-
party Android Auto apps can actually access the car’s data. 
The Android Auto specification mandates a gap between the 
IVN and Android Auto, partially due to its media- and navi-
gation-based functions, unlike Android Automotive which 
needs access to the IVN.

As of now, there are only two major publications on 
Android Automotive. [28] proposes a sensing model for vehic-
ular sensor data. It points out how its architecture can 
be embedded into the Android Automotive platform as a 
proof-of-concept. [13] is a high-level description of Android 
Automotive security. It focuses on malicious third-party apps 
and their potential impact on safety, security and privacy. 
Unlike our work, its focus lies on static and dynamic app 
analyses, not a security analysis of the framework. In fact, the 
authors developed a tool for vehicle-specific code analysis, 
called AutoTame. Their attacks focus on driver disturbance 
(by raising the volume of a media app) and availability (forking 
an app until it crashes). They also briefly discuss privacy, i.e., 
leakage of sensitive information, through the use of two apps. 
Only one app has permission to upload data to the Internet, 
whereas the other app can read sensitive sensor information. 
Through the means of inter-process communication (IPC), 
the app that reads sensitive information can communicate the 
sensitive information to the other app that uploads it to the 
malicious third-party. For this attack to succeed, the third-
party must have control over both apps, which makes this 
attack harder to mount.

IVI Security
The in-vehicle infotainment (IVI) system is a major point of 
entry into the vehicle due to its connectivity provided by the 
telematic control unit (TCU). As a result, it is a popular attack 
vector since wireless surfaces, such as Bluetooth or WiFi, or 
wired interfaces, such as the USB port, can be exploited. 
Although manufacturers claim that the IVI usually has an air 
gap to the in-vehicle network (IVN), it has been shown in [25] 
that this is not always true. Once access to the CAN bus - the 
dominant IVN technology - has been obtained, it is possible 
to perform CAN injection attacks and compromise the func-
tionality of the vehicle, as well as impact the safety of the driver.

Here we focus on CAN bus security. [18] identified that 
messages sent on the CAN bus can be easily eavesdropped on, 
and injected into the CAN bus since CAN messages are not 
encrypted or authenticated. [21] and [24] comprehensively 
demonstrated several CAN injection attacks to various 
components such as the brakes and engine on different 
vehicles. They show that all these attacks require access to the 
vehicle’s internal CAN bus and can override several body- and 
powertrain-related events.

All of the aforementioned attacks were mounted by 
having physical access to the vehicle, usually through the 
OBD-II interface. Leveraging the wireless connectivity of 
infotainment and telematics platforms, remote attacks are 
becoming a reality. In addition, these attacks can be scaled 
easier since multiple vehicles can be targeted at the same time. 
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This increases the probability of an attack to be mounted and 
thus the risk goes up. [10] demonstrated that remote vulner-
abilities such as in GM’s OnStar telematic solution would allow 
an attacker to gain access to the IVN. Besides leveraging the 
cellular interface to access the vehicle, short-range wireless 
attack vectors such as Bluetooth have also been evaluated. In 
the famous Jeep hack [25], two researchers staged a remote 
attack over the cellular network by compromising a software 
vulnerability in the IVI. Another use of cellular interfaces as 
point of entry into the vehicle was discussed in [14] when 
researchers crafted SMS messages to exploit an aftermarket 
dongle connecting to a vehicle via the standardized OBD-II 
port. [16] exposed vulnerabilities in the GM OnStar app that 
allowed unauthenticated API calls. The attack was only limited 
to sending CAN messages that were predefined by the OnStar 
app. Arbitrary CAN injection was impossible.

All attacks reported so far can be categorized into two 
generations as depicted in Fig. 1. The first generation of auto-
motive attacks required a physical connection whereas most 
IVI attacks so far were exploiting wireless interfaces and 
became popular in research around 2015. More advanced and 
standardized IVI platforms such as Android Automotive will 
likely lead to the next generation of attacks on vehicles. In 
particular, remote attacks leveraging third-party (Android) 
apps on IVIs will penetrate more vehicles and lead to larger-
scale attacks.

Threat Model and 
Background

Threat Model
Android Automotive marks the start of a new era for IVI 
platforms. Google began opening APIs for third-party devel-
opers in May 2019 [15] and encouraged development of multi-
media apps. It was announced in May 2019 that the 2020 
model year Polestar 2 EV (manufactured by Volvo) will be the 
first vehicle to feature an IVI equipped with Android 
Automotive. In October 2019, Volvo unveiled the XC40 
Recharge which is also equipped with Android Automotive 
[31]. Remote attacks as described in the previous section are 
likely to increase with an open third-party developer 
ecosystem. As a result, working on the security of the Android 
Automotive framework is vital at an early stage. Infrastructure 
vulnerabilities such as security f laws in network or OS 
components are always possible and will require immediate 
response from the security team of the IVI manufacturer 
during the lifecycle of the unit. These vulnerabilities can 

be easily patched via over-the-air (OTA) updates in the future 
and can thus limit serious damage in a short time. Currently, 
only a few vehicles other than Tesla offer a fully functional 
OTA update process. This is partially due to the cumbersome 
integration of existing update solutions into the existing 
legacy OS architecture. If an OEM offers multiple IVIs in 
different models with different OS, they have to repeat this 
integration process which can turn out very tedious. Android 
Automotive is based on Android which supports OTA 
updates for many years now. The Android Open Source 
Project (AOSP) has even introductions for the specific auto-
motive use case which “differs slightly in the Download step 
due to support for Garage Mode” [40]. Besides updating the 
IVI OS, OTA firmware updates for other ECUs are also 
supported according to Google’s documentation. 
Aforementioned “Garage Mode” is a low-power mode that a 
parked car can use when the ignition off. This enables over-
night OTA updates when the car is in the garage and 
connected to the customer’s home WiFi network. Although 
Google allows OEMs to also enable USB updates on the IVI, 
we highly recommend against this sort of physical update 
process due to an increased security risk as depicted in the 
past [41]. We can assume that with gradual deployment of 
Android Automotive on IVIs, the OTA update process can 
be further standardized and made easier to integrate for auto-
motive OEMs along all their future vehicle models.

In comparison, framework design vulnerabilities such as 
issues with Android Automotive’s core modules or permission 
model are harder to fix after the system has been adapted for 
a certain time. This group of vulnerabilities can have a far-
reaching impact and can cause significant disruption in the 
future. Hence, an early security framework is beneficial, espe-
cially with the notion that Android-equipped IVIs will hit the 
market in the following years.

Unlike static code analysis of Android Automotive apps 
(such as the one in [13], this paper is confined to an architec-
ture-level security analysis. We look at the Android architec-
ture itself, especially the vehicle-specific modules that have 
been introduced in Android Nougat (7.x). We focus on the 
interaction of third-party apps with the underlying Android 
Automotive-specific modules. The bottom module where our 
inspection ends would be the Vehicle Hardware Abstraction 
Layer (VHAL) since this is the module that communicates 
with the IVN.

A secure architecture will mitigate most, if not all, of 
framework vulnerabilities in our opinion. In what follows, 
we will introduce the Android Automotive stack in Google’s 
codebase [1], elaborate on the existing permission model for 
vehicles, provide a primer on the CAN protocol, as well as 
discuss the VHAL which is the most critical component in 
interfacing with the car.

Overview
Android Automotive is a regular Android build with extra 
modules that have been specifically tailored for automotive 
apps to interact with the vehicle. We use the Android Oreo 
(8.1) branch of Android Automotive codebase for our analysis 
that can be found from: https://android.googlesource.com/

 FIGURE 1  Classification of Automotive Attacks
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platform/packages/services/Car/+/refs/heads/oreo-release. 
The main modules are listed as follows:

 • platform/packages/services/Car

 • hardware/libhardware/include/hardware/vehicle.h

 • hardware/libhardware/modules/vehicle/vehicle.c

The system architecture of the Android Oreo branch (it 
is getting revamped significantly in newer flavors Android Pie 
and 10) is depicted in Fig. 2. It consists of three layers of 
modules. On the top layers, we have Android apps (APK) that 
can be categorized into native (manufacturer-provided) and 
third-party apps. Native apps are provided by Google (e.g., the 
HVAC app), but can be overridden by the OEM to offer custom-
ized builds. Third-party apps can be downloaded in the future 
from the vehicle-specific Play Store that is planned to be offered 
by Google. Examples of those apps can be usage-based insur-
ance (UBI) apps such as Progressive Snapshot as mentioned 
earlier. Each app interacts with its CarManager component 
that is part of the SDK layer. Think of these components as 
APIs that are available to the apps to interact with the vehicle. 
Each CarManager module talks to a CarService component. 
Android Oreo defines certain instances of the latter, e.g., 
CarHvacService for the HVAC app or CarSensorService for 
third-party apps that read certain sensors from the IVN. This 
component of the SDK can be regarded as a security middle-
ware where access control is defined, i.e., permissions are 
checked for that specific app. The permission model will 
be detailed later. If an app is allowed to communicate with the 
IVN, it will finally pass a final layer, the Vehicle Hardware 
Abstraction Layer (VHAL) that is part of the NDK. The VHAL 
is responsible for mapping vehicle properties (Google-specified 
signals that shall be supported by any vehicle, extendable by 
the vendor) to CAN signals defined in the vehicle’s DBC file. 
Eventually, the VHAL reads from, or writes to the IVN, e.g., 
the CAN bus. Please note that other IVN technologies, such 
as Automotive Ethernet, are also possible. In the following, 
we will assume that the IVN consists of CAN buses.

Permission Model
Android permissions are divided into four protection levels [2]:

 • Normal: Normal permissions result in minimal risk to 
the user’s privacy. If an app declares in its manifest that 

it needs a normal permission, the system automatically 
grants the app that permission at installation time 
without any explicit confirmation. Users cannot revoke 
these permissions.

 • Dangerous: Dangerous permissions are defined if the 
user’s private information has to be accessed. If an app 
declares that it needs a dangerous permission, the user 
has to explicitly grant the permission to the app at 
installation time and/or its first launch. The app might 
degrade or not work at all if these permissions are 
not granted.

 • Signature: The system grants these app permissions at 
installation time, but only when the app is signed by the 
same certificate as the app that defines the permission. 
In the automotive domain, only OEM-native apps can 
use signature permissions.

 • signature|privileged: These permissions are granted to 
either cryptographically signed (see signature above) or 
preinstalled apps.

All vehicle-specific permissions are defined in package 
android.car.permission [33] and summarized in Table 1. Third-
party apps will either use normal or dangerous permissions. 
In any case, signature permissions are limited to native (OEM) 
apps, i.e., a regular app cannot access HVAC settings or 
control body functions such as the seats or windows. Currently, 
most permissions are signature or privileged. The only 
dangerous permissions at this time that require explicit user 
consent are speed and some more information about the 
vehicle’s energy state. Nevertheless, several powertrain-related 
information, such as gear position or engine speed (RPM) are 
available to anyone without explicit permission. Although the 
current permission model is relatively strong, it can 
be  designed more fine-grained as we  will discuss later. 
Furthermore, while writing this paper, we encountered several 
iterations of the permission model, and hence assume that 
changes in the near future are unavoidable.

CAN Primer
Vehicular sensor data is collected from ECUs that are typically 
interconnected via an in-vehicle network (IVN), with the 
CAN bus being the most dominant technology in current 
vehicles. Fig. 3 depicts the structure of a CAN 2.0A data frame:

CAN is a multi-master, message-based broadcast bus 
which is message-oriented. Instead of having a source or desti-
nation address, each frame carries a unique message identifier 
(ID) that represents its meaning and priority. Lower CAN IDs 
have higher priority and will “win” the distributed arbitration 
process that occurs when multiple messages are sent on the 
CAN bus at the same time. The basic CAN ID in the CAN 
2.0A specification is 11 bits long and thus allows for up to 2048 
different CAN IDs. Data in a CAN frame (called payload) can 
be up to 8 bytes long.

Next, we will describe the structure of the data payload 
field, which consists of one or more signals. A signal is a piece 
of information transmitted by an ECU, such as vehicle speed. 
For instance, a message targeted for the Transmission Control 
Module (TCM) might contain both the vehicle speed (m/s) 

 FIGURE 2  Android Automotive System Architecture
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and engine speed (RPM) signals in one CAN message. The 
length and number of signals vary from CAN ID to CAN ID 
and are defined in the DBC file for that specific vehicle. This 
translation file is proprietary to the OEM and usually specific 
to a model generation. It specifies the start position and length 
of a signal, so it can be easily retrieved from the payload and 
mapped to a context.

All recorded CAN data can only be interpreted if one 
possesses the translation tables for the target vehicle. There 
are multiple standards for those tables, such as KCF [20] and 
ARXML [5]. However, the most common format used for 
this purpose is the aforementioned DBC [12], a standard 
created by German automotive supplier company 
Vector Informatik.

Vehicle Hardware Abstraction 
Layer (VHAL)
The Vehicle Hardware Abstraction Layer (VHAL) is a vendor-
extendable Android Automotive module which abstracts 
vehicle data from the IVN to higher-layer components (see 
Fig. 2). Google provides a list of VHAL properties [32] that 
shall be  supported by all vehicles implementing Android 
Automotive. Examples of these properties are listed as follows:

 • HVAC Controls

 • Vehicle Information (e.g., make, model, year, etc.)

 • Powertrain-related data (e.g.., speed, RPM, etc.)

 • Body-related data (e.g., windows, seats)

 • Driver Safety (e.g., ABS)

 • Diagnostic data (e.g., OBD-II DTCs)

 • IVI-related data (e.g., display brightness).

Each property can be  conf igured with the 
following attributes:

 • Access Type (read/write)

 • Change Mode (on change, continuous, polling, static)

 • Area Type (global, zoned)

 • Min/Max Values

 • Min/Max Sampling Rate (for continuous properties).

Properties can be accessed using get, set and subscribe 
functions according to their protection level defined in 

TABLE 1 Permissions defined in Android Automotive 
(android.car.permission)

Permission Name Protection Level
READ_CAR_DISPLAY_UNITS Normal

CONTROL_CAR_DISPLAY_UNITS Normal

CAR_ENERGY_PORTS Normal

CAR_INFO Normal

CAR_EXTERIOR_ENVIRONMENT Normal

CAR_POWERTRAIN Normal

CAR_SPEED Dangerous

CAR_ENERGY Dangerous

BIND_VMS_CLIENT Signature

BIND_PROJECTION_SERVICE Signature

BIND_INSTRUMENT_CLUSTER_
RENDERER_SERVICE

Signature

BIND_CAR_INPUT_SERVICE Signature

CAR_MOCK_VEHICLE_HAL signature|privileged

READ_CAR_STEERING signature|privileged

CAR_IDENTIFICATION signature|privileged

CAR_MILEAGE signature|privileged

CAR_TIRES signature|privileged

CAR_ENGINE_DETAILED signature|privileged

CAR_DYNAMICS_STATE signature|privileged

CAR_VENDOR_EXTENSION signature|privileged

CAR_PROJECTION signature|privileged

ACCESS_CAR_PROJECTION_STATUS signature|privileged

CONTROL_CAR_SEATS signature|privileged

CONTROL_CAR_MIRRORS signature|privileged

CONTROL_CAR_WINDOWS signature|privileged

CONTROL_CAR_DOORS signature|privileged

CONTROL_CAR_CLIMATE signature|privileged

CAR_EXTERIOR_LIGHTS signature|privileged

CONTROL_CAR_EXTERIOR_LIGHTS signature|privileged

READ_CAR_INTERIOR_LIGHTS signature|privileged

CONTROL_CAR_INTERIOR_LIGHTS signature|privileged

CAR_POWER signature|privileged

CAR_NAVIGATION_MANAGER signature|privileged

CAR_DIAGNOSTICS signature|privileged

CLEAR_CAR_DIAGNOSTICS signature|privileged

VMS_PUBLISHER signature|privileged

VMS_SUBSCRIBER signature|privileged

CAR_DRIVING_STATE signature|privileged

CONTROL_APP_BLOCKING signature|privileged

CAR_CONTROL_AUDIO_VOLUME signature|privileged

CAR_CONTROL_AUDIO_SETTINGS signature|privileged

RECEIVE_CAR_AUDIO_DUCKING_
EVENTS

signature|privileged

CAR_INSTRUMENT_CLUSTER_
CONTROL

signature|privileged

CAR_HANDLE_USB_AOAP_DEVICE signature|privileged

CAR_UX_RESTRICTIONS_
CONFIGURATION

signature|privileged

STORAGE_MONITORING signature|privileged

CAR_ENROLL_TRUST signature|privileged

 FIGURE 3  CAN Data Frame Structure
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Android Automotive’s permission model as described before. 
The OEM/vendor is responsible for mapping the supported 
properties to the associated vehicle signals. Properties are 
usually mapped to CAN signals defined in a DBC (or a selec-
tion of it) which can be stored on the IVI. As a result, proper-
ties will be transparent to all third-party app developers, i.e., 
anyone can create an app using the available properties 
without having to know the vehicle architecture. Google has 
also provided a method for vendors to extend the AOSP 
VHAL and add their own vendor-specific properties. These 
properties are tagged as vendor properties and reside in a 
specific ID range provided by Google. These properties will 
not be  made public and can only be  accessed by vendor 
services/apps via the CarVendorExtensionService. Most prop-
erties are read-only and have get methods implemented. Set 
methods are usually reserved for properties that are covered 
by signature|privileged permissions and are thus only usable 
by OEM/vendor apps.

EVITA Methodology
The objective of EVITA, a project co-funded by the European 
Union within the Seventh Framework Programme for 
Research and Technological Development, is to design, to 
verify, and to prototype building blocks for secure automo-
tive on-board networks protecting security-relevant compo-
nents against tampering and sensitive data against compro-
mise. [17] outlines the process of analyzing the security 
requirements for automotive on-board networks. It intro-
duced a way to calculate the risk of an attack path based on 
attack probability and severity. According to EVITA, the 
severity of an attack is considered in terms of safety, privacy, 
financial and operational security threats that may be associ-
ated with harm to the stakeholders. Safety severity can range 
from no injuries to life-threatening or fatal injuries. Privacy 
severity ranges from no unauthorized access to data to 
vehicle/driver tracking for multiple vehicles. Financial 
severity ranges from no financial loss to heavy losses for 
multiple vehicles. Finally, operational severity ranges from 
no impact on operational performance to significant impact 
for multiple vehicles. In what follows, we will introduce three 
theoretical attacks derived from the aforementioned severity 
categories. Financial and operational attacks will be merged 
into one category.

As mentioned in the threat model, we will analyze the 
system architecture of the platform. Although Google did a 
thorough job at implementing security countermeasures, 
such as access control and permission model to prevent poten-
tially malicious third-party apps mounting serious attacks 
on the vehicle, we would still like to analyze if such a mali-
cious app can perform damage as defined in the EVITA meth-
odology. For now, it appears that the separation of apps into 
native and third-party apps with a proper permission model 
will prevent any malicious entities from gaining arbitrary 
write access to vehicle components. Nevertheless, there still 
remains room for improvement as the proposed security 
mechanisms are not yet fool-proof. Three theoretical attacks 
are described in the following section. Attack #1 focuses on 

compromising driver privacy, i.e., obtaining vehicular sensor 
data that should be restricted. Attack #2 shows how financial 
and operational damages can be  done to the cluster by 
breaking it. Finally, Attack #3 depicts how driver safety can 
be compromised by distracting the driver, as well as gaining 
access to DBC files which can then be leveraged for direct 
CAN injection attacks.

Possible Attacks

Attack #1: Privacy
The first attack revolves around compromising driver privacy 
by leaking privacy-sensitive information. Imagine a third-
party app that has access to the engine speed (RPM) as well 
as gear position. According to the permission model of 
Android Automotive, these are normal permissions, i.e., any 
app can obtain them without explicit user consent. In 
contrast, vehicle speed is labeled as a dangerous permission. 
The driver has to explicitly approve the collection of this 
sensor data on first start of a third-party app. Speed, RPM 
and gear position share a physical relationship [34]. If both 
RPM and gear position are known, it is easy to calculate the 
vehicle speed. Although there is no closed-form equation, 
with a sufficient amount of collected data, inferring vehicle 
speed is relatively straightforward. As a result, a sensor with 
dangerous permission can be inferred by an unprivileged 
third-party app. This should not happen, especially since 
vehicle speed contains very sensitive information about the 
driver and can be abused if it is in the wrong hands. As 
academic research results [11, 30] show, it is even possible to 
derive the GPS location (comes also with a dangerous permis-
sion in Android) from speed. This enables driver location 
tracking, a grave privacy leakage that has to be avoided at all 
cost. There may be  more physical relationships that can 
be exploited to show even further privacy leakage. This is 
something that can be part of future work.

Attack #2: Financial/
Operational
This attack describes how both financial and operational 
damages can be inflicted to the vehicle/driver. Our goal for 
this attack is to break the cluster. Breaking other units such 
as the HVAC is impossible with the current security mecha-
nisms since only native apps have access to those permissions. 
As depicted in Table 1, the protection level for CONTROL_
CAR_DISPLAY_UNITS is normal, i.e., accessible to any 
unprivileged third-party app. According to [33], this permis-
sion allows an application to control the display units for 
distance, fuel, tire pressure, EV battery and fuel consumption 
which are displayed on the cluster that is being controlled by 
the IVI. For instance, a malicious third-party app can 
be instructed to switch from minimal to maximal fuel level 
at set intervals. From Android Automotive’s design docu-
ments, the maximum frequency that we can perform this with 
stands at 1 Hz. As a result, we can force an analog instrument 
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gauge indicating the fuel level on the cluster to alternate 
between both ends of its range once per second which will 
eventually break the needle. This results in (minor) financial 
damage, as the car owner has to get the cluster repaired. 
Furthermore, this can cause operational damage as well, as 
the cluster will not be able to display the correct fuel level to 
the driver. Even if the potential damage is minor, there is no 
reason why a third-party app should be able to control the 
cluster. Since CONTROL_CAR_DISPLAY_UNITS is zero-
permission, any useful app can hide this malicious intent 
without disclosing it to the driver.

Attack #3: Safety
The last attack will compromise the driver’s safety and thus 
needs to be avoided at all cost. The same aforementioned 
attack to cause financial and operational damages can also 
lead to driver distraction. A continuous switching of cluster 
units will confuse the driver initially which could potentially 
lead to an accident.

Finally, we will present an attack on driver safety by 
exploiting possible wrong design choices of the IVI vendor 
which can lead to arbitrary CAN injection --- the worst-case 
scenario. Note that this attack is not specifically a vulnera-
bility of Android Automotive, but more a possible implemen-
tation flaw. As discussed before, the VHAL mapping table is 
part of the Android Automotive firmware deployed on the 
IVI. A change to this mapping table can cause unseen 
behavior. Let us assume that the attacker knows the CAN 
signal to accelerate the vehicle (e.g., the gas pedal position 
which has been shown to perform this safety-critical attack). 
They could have obtained it by manually reverse engineering 
this specific signal on another target vehicle or using auto-
mated reverse engineering tools for vehicles [35]. If complete 
or partial DBC files for the target vehicle are included as part 
of the system firmware and the attacker obtains access to the 
firmware, they can reverse-engineer it and have access to the 
mapping table and thus DBC files. With this knowledge, a 
benign command, such as displaying a value on the cluster, 
can be exchanged with a more malicious command, such as 
accelerating the vehicle. Once recompiled and reflashed on 
the victim’s vehicle, the latter will seriously misbehave while 
displaying cluster units, as acceleration of the vehicle will 
be  forced. This is very dangerous to the driver. Another 
possible way to perform this attack is to obtain remote code 
execution on the target IVI. If the attacker can run the shell 
as a root user (e.g., by accessing the ADB shell over the IVI’s 
USB port or WiFi), they can modify the VHAL mapping table 
by overwriting the DBC file which results in the same effect 
as described above. In order to prevent this attack, simple 
countermeasures, such as signing the firmware or blocking 
shell access by open debug interfaces, is sufficient. 
Unfortunately, adhering to those basic security principles has 
been inconsistent in the automotive industry, such as in the 
famous Jeep hack [25]. Furthermore, using DBC files for 
VHAL mapping in general can also be rethought, since a 
leakage of those proprietary translation tables are not in the 
best interest of the OEMs and can be used for physical CAN 
injection attacks.

Recommendations
Based on our observations, we would like to summarize some 
recommendations which we would like to make to Google as 
the platform provider, as well as OEMs and Tier 1s that are in 
charge of integrating Android Automotive into their IVIs:

 • Fine-grained permission model: Although we found 
that the permission model of Android Automotive is 
constantly evolving, the current version (see Table 1) is 
still too coarse-grained which can lead to privacy 
leakage. In particular, multiple properties are 
summarized in one permission (e.g., CAR_
POWERTRAIN). A possible way to both extend and 
separate permissions are to assign a unique permission 
to each property. Furthermore, [42] provides a privacy 
score that quantifies the privacy risk of 20 typical 
vehicular sensors. Based on this metric, it is also possible 
to define dangerous and normal permissions.

 • Further standardization from Google: Currently, many 
security-critical functions (such as the DBC mapping) 
are not specified by Google. As a result, OEMs and Tier 
1s are free to design specific components on their own. 
Unfortunately, the risk of lacking a secure design and 
implementation for these components is imminent as 
we demonstrated. We believe that Google as the platform 
provider should be responsible for suggesting or 
standardizing security recommendations. In the case of 
DBC mapping, OEMs and Tier 1s should at no point 
include (plain text) DBC files in the firmware image. One 
possible option is to “hard-code” a lookup table and 
offload the mapping task to Trusted Execution 
Environment (TEE) so that the code with the lookup 
table is protected with respect to confidentiality 
and integrity.

 • Separation of domains in IVN architecture: Usually, 
the IVI is part of a dedicated “Infotainment CAN” which 
is connected to other CAN buses such as “Powertrain 
CAN” or “Body CAN” via a gateway module. The easiest 
and most efficient way to prevent CAN injection attacks 
is to move safety-critical domains such as the powertrain 
modules on a different CAN bus is to implement some 
sort of access control (e.g., whitelisting) or firewall in the 
gateway [39]. As a result of this, a compromised IVI will 
not be able to write to safety-critical areas. From our 
understanding, vehicular gateways in IVN architectures 
are not mandatory and some OEMs might want to 
continue without a gateway at all, primarily due to 
cost [36].

 • Protection against runtime attacks: Since Android 
Automotive is based on the mature Android platform, 
we assume that the IVI OS comes with existing 
countermeasures. Nevertheless, Return-Oriented 
Programming (ROP) attacks can still occur where an 
attacker gains control of the call stack of an Android app. 
This can be done by a malicious third-party app for 
instance and lead to a buffer overflow on the IVI. [37] 
shows that despite a recent change from Dalvik to the 
more secure Android Runtime (ART), ROP threats still 
exist. Countermeasures have been proposed, such as 
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in [38]. Nevertheless, the code written in C/C++ (device 
drivers, etc.) is most vulnerable to runtime attacks. 
Vendors (OEMs and Tier 1s) write a majority of these 
components themselves to accomplish vehicle-specific 
functionality. This code should be scrutinized heavily 
(relative to the Java layer). Furthermore, we discussed the 
possibility to execute an ADB shell in Attack #3. A good 
practice to avoid this is to disable USB debugging by 
default so the attacker cannot get authorized to launch an 
ADB shell or use other ADB functionalities. Since it is also 
possible to connect to ADB remotely over WiFi, 
developers have to think of restricting this attack surface 
as well. Even if the ADB shell can be accessed through 
USB or WiFi, it should be impossible to be ran as root user 
by default. This is controlled by a flag in the boot partition.

Summary/Conclusions
We conducted a first high-level security analysis of the 
emerging Android Automotive platform. We described its 
system architecture and discussed how automotive attacks 
can be scaled under a new threat model compared to previous 
generations of security exploits in vehicles. In particular, 
we discussed the newly introduced vehicle-specific Android 
permissions under the current permission model and found 
that it is still too coarse-grained and needs improvement. 
We  showed its vulnerabilities through three theoretical 
attacks and presented possible mitigations. Furthermore, 
we showed how a bad implementation of the framework can 
compromise driver safety. Recommendations for a more 
secure design are presented. Nevertheless, the proposed 
security mechanisms of Android Automotive are promising. 
Since the framework is constantly evolving and first produc-
tion units that leverage the full functionality of it are yet to 
be released, we are confident that the issues described in this 
paper can be addressed and incorporated into future versions 
of Android Automotive.
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UBI - Usage-based insurance
RPM - Revolutions per minute, engine speed
EVITA - E-safety vehicle intrusion protected applications
ECU - Electronic Control Unit
CV - Connected Vehicle
HVAC - Heating, Ventilation and Air Conditioning

VHAL - Vehicle Hardware Abstraction Layer
IPC - Inter-Process Communication
TEE - Trusted Execution Environment
ROP - Return-Oriented Programming
ART - Android Runtime
ADB - Android Developer Bridge
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