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(57) ABSTRACT

As automotive security concerns are rising, the Controller
Area Network (CAN)—the de facto standard of in-vehicle
communication protocol—has come under scrutiny due to
its lack of encryption and authentication. Several vulner-
abilities, such as eavesdropping, spoofing, and replay
attacks, have shown that the current implementation needs
to be extended. Both academic and commercial solutions for
a secure CAN have been proposed, but OEMs have not yet
integrated them into their products. The main reasons for
this lack of adoption are their heavy use of limited compu-
tational resources in the vehicle, increased latency that can
lead to missed deadlines for safety-critical messages, as well
as insufficient space available in a CAN frame to include a
Message Authentication Code (MAC). By making a trade-
off between security and performance, this disclosure over-
comes the aforementioned problems of a secure CAN.
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Table 2 : Free space in DBCs

#Rebalan- #IDs Usable
cable IDs  with FS CAN IDs (%)

Veh. Bus #IDs

HS1 102 31 63 92.2
Veh.A
HS2 53 2 35 69.8
HS 81 5 26 38.3
Veh.B
MS 62 3 16 30.6
Veh.C HS1 57 7 38 78.9
HS2 42 1 26 64.3
HS1 58 7 43 86.2
Veh.D
HS2 51 4 38 86.4 FIG' 10
Table 3: Benchmark of other metrics
0
Encr. Auth. BL CPUo(%) RAM(kB) Flash(kB)
(%) S/R S/R S/R
None None 0.25 0/0 1.24/1.29 10.1/11.96
VatiCAN 05 86.7/82.3 157/1.66 17.25/17.07
AES128 None 0.5 0.8/2.0 1.25/1.30 10.30/12.02
VatiCAN 1 87.0/82.8 1.60/1.67 17.35/1713
AES256 None 0.5 1.0/25 1.27/1.31 10.31/12.04
VatiCAN 1 87.0/82.9 1.61/1.69 17.37/17.15
3DES None 0.25 52.8/53.5 1.26/1.31 12.27/14.22
VatiCAN 0.5 93.8/90.8 1.60/1.69 19.38/19.33
TEA None 0.25 0.5/0.5 1.27/11.32 10.55/12.50
VatiCAN 0.5 86.8/82.4 1.60/1.69 17.78/17.61
XOR None 0.25 0.01/0.01 1.25/1.30 10.16/12.05

VatiCAN 0.5 86.7/82.3 1.571.67 17.3117.17
S2 S2 Auth  0.25 0.04/0.03 1.25/1.30  10.24/12.10

FIG. 11
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Table 4: Cracking Success based on Trace Length (in %)
Trace Length 5 10 25 50 75 100

ST1 [ 11720 6/10 414 3/3 212 111
Veh.A ID | 1020 6/10 414 3/3 2/2 111
cnt | 1120  6/10 4/4 313 2/2 11
ST1 | 1220 410 3/4 2/3 112 111
Veh.B ID | 1120 3110 3/4 113 1/2 11
cnt | 1220 410 3/4 213 1/2 11
ST1 | 820 5/10 3/4 3/3 2/2 11
Veh.C ID | 820 5/0 3/4 3/3 212 11
cnt | 820 510 3/4 313 212 11
ST1 | 620 3110 0/4 0/3 0/2 0/1
Veh.D D 6/20  3/10 0/4 0/3 0/2 0/1
cnt | 6/20 310 0/4 0/3 0/2 0/1

FIG. 12
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Table 5: Brute-Forcing Success for Top X Candidates

TL (%) Top1 Top2 Top3 TopS Top10
ST1 46% 58% 58% 61% 65%
5 ID 44% 54% 54% 58% 61%
cnt 46% 58% 58% 61% 65%
ST1 45% 68% 68% 73% 78%
10 ID 43% 58% 58% 63% 68%
cnt 45% 68% 68% 73% 78%
ST1 63% 81% 88% 88% 88%
25 ID 63% 81% 88% 88% 88%
cnt 63% 81% 88% 88% 88%
ST1 67% 92% 92% 92% 92%
50 ID 58% 83% 83% 83% 83%
cnt 67% 92% 92% 92% 92%
ST1 63% 88% 88% 88% 88%
75 ID 63% 88% 88% 88% 88%
cnt 63% 88% 88% 88% 88%
ST1 75% 100% 100% 100% 100%
100 ID 75% 100% 100% 100% 100%
cnt 75% 100% 100% 100% 100%

FIG. 13

Table 6: Timing analysis for full traces (minutes:seconds)

CAN (LibreCAN)  S2-CAN (LibreCAN+)

Veh. A 0:27 10:33
Veh. B 0:36 18:32
Veh. C 0:26 10:42
Veh.D 0:26 10:52

FIG. 14
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SUFFICIENTLY SECURE CONTROLLER
AREA NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 63/251,958, filed on Oct. 4, 2022.
The entire disclosure of the above application is incorpo-
rated herein by reference.

FIELD

[0002] The present disclosure relates to secure messaging
in a vehicle network.

BACKGROUND

[0003] Since the advent of the first comprehensive auto-
motive security analysis in 2010, this field has attracted
significant attention. While the first generation of vehicle
security (c. 2010-2015) focused on exploiting physical inter-
faces, such as the OBD-II port, or reverse-engineering
Electronic Control Unit (ECU) firmware, the second gen-
eration (c. 2015-now) has been focusing on scaling attacks
to multiple vehicles by analyzing remote attack surfaces.
The most prominent and comprehensive attack of this gen-
eration that led automotive cyber security to become a
mainstream research and engineering subject was the Jeep
Hack that allowed the attacker to remotely compromise and
steer the affected vehicles. With further scaling in each
generation, the risk of automotive vulnerabilities towards
driver/passenger safety and privacy, as well as financial and
operational damage potential increases. All attacks in each
generation have (CAN) injection/spoofing as the necessary
(final) component of causing havoc in common. This
enables the compromise of the vehicle which can, in the
worst case, have a serious impact on driver safety, for
instance, by electronically disabling the brakes or acceler-
ating the vehicle.

[0004] Unfortunately, CAN injection is the easiest part of
the aforementioned attacks. This can be explained by vul-
nerabilities in the CAN design which dates back to 1987.
Despite allowing a fast, robust, and reliable communication,
CAN was not designed with security in mind, and vehicles
can no longer be regarded as closed systems due to an
increased number of external interfaces with unpredictable
input. CAN is a broadcast bus without encryption and
authentication. Messages are sent in plain text and everyone
who has access to the CAN bus can inject arbitrary messages
or spoof existing ones. Encryption and authentication in a
vehicle should usually go hand in hand. In order for spoofed
messages to cause a visible impact on the compromised
vehicle, the attacker needs to (a) know the syntax and
semantics of the crafted CAN payload, and (b) be allowed
to inject the targeted CAN message. In case of (a), this is
only possible by reverse-engineering unencrypted CAN data
traces since OEMs keep the aforementioned semantics
secret instead of disclosing them publicly (security by
obscurity). Recently, automated CAN reverse-engineering is
shown to be achievable in a few minutes, enforcing existing
attack vectors and necessitating an encrypted CAN. Finally,
for case (b), authentication will prevent unauthorized enti-
ties to perform the CAN injection.

[0005] Although mechanisms such as encryption and
authentication are widely used and accepted in traditional
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computer communication networks, their adoption in the
automotive domain comes with three major problems related
to performance that currently limit their deployment in
commercial vehicles:

[0006] (1) Cost: For cost reasons, ECUs in an in-vehicle
network (IVN) are resource-constrained. Since most
safety-critical functionalities require simple computa-
tions and do not need high-performance hardware,
these legacy ECUs are very simple and highly opti-
mized for repetitive control operations. For instance,
current Engine Control Modules can have 80 MHz
clock frequency, 1.5 MB Flash memory and 72 kB of
RAM (Bosch). Using cryptographic algorithms for
encryption and/or authentication would require more
performant hardware which drive up the cost for
OEMs. Besides unit costs, adding security protocols to
certain legacy ECUs (especially in the powertrain
domain) that have been in use in cars for multiple years
or even decades due to lack of necessary software
improvements would increase the development cost.

[0007] (2) Latency: In order to guarantee functional
safety in a vehicle, there are stringent hard real-time
requirements for certain safety critical control data. The
maximum permitted end-to-end (E2E) latency for
cyclic control data transmitted on the CAN bus can
range from a few milliseconds to a second. Since secure
encryption and authentication algorithms add a non-
negligible delay, as well as block CAN messages to be
sent until fully encrypted (due to block size), message
deadlines can be missed which can endanger driver
safety.

[0008] (3) Bus Load: CAN messages contain only 8
bytes of payload. Message Authentication Codes
(MAC:s) to protect data integrity have to be appended
to the data, but due to lack of space, several existing
solutions send the MAC in a separate CAN message.
This increases the bus load which is an indicator for the
utilization of the network. A high bus load can lead to
certain CAN messages missing their (hard) deadlines,
harming safety. To avoid this, the average bus load
must be kept under 80% at all times.

[0009] For the above reasons, encryption and authentica-
tion on the CAN bus have not yet been adopted in commer-
cial vehicles. Traditional cryptography-based solutions offer
a medium to high level of security (see the number of
combinations to brute-force MAC, labeled as Security
Level, in FIG. 9) at the expense of performance (i.e., CPU,
latency, bus load). These solutions are referred to herein with
the generic term Secure CAN (S-CAN). Brute-forcing a
MAC would take too long for in-vehicle ECUs, especially if
keys are dynamically refreshed. As a result, this disclosure
proposes to break away from traditional cryptography-based
solutions to address the aforementioned three problems
while providing reasonable, albeit relaxed security guaran-
tees. This disclosure proposes sufficiently secure CAN (S2-
CAN) messaging scheme to enable a tradeoff between
performance and security to offer a feasible and secure
real-world solution for the automotive industry.

[0010] This section provides background information
related to the present disclosure which is not necessarily
prior art.
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SUMMARY

[0011] This section provides a general summary of the
disclosure, and is not a comprehensive disclosure of its full
scope or all of its features.

[0012] A secure method is presented for messaging in a
vehicle network. The method is comprised generally of
establishing a data session on the vehicle network by a given
electronic control unit in the vehicle network, and broad-
casting a data frame across the vehicle network by the given
electronic control unit. In one embodiment, the data session
is established by: receiving, by the given electronic control
unit, an initialization message broadcast over a serial data
link by a gateway of the vehicle network, where the initial-
ization message includes encoding parameters for encoding
data frames; storing, by the given electronic control unit, the
encoding parameters in a memory of the given electronic
control unit; and broadcasting, by the given electronic
control unit, an acknowledgement message over the serial
data link in response to receiving the initialization message,
where the acknowledgement message includes integrity
parameters that are associated with the given electronic
control unit. A data frame is in turn broadcasted a data frame
across the vehicle network by: inserting, by the given
electronic control unit, the integrity parameters into payload
of the data frame; encoding, by the given electronic control
unit, the data frame in accordance with the encoding param-
eters; and transmitting, by the given electronic control unit,
the encoded data frame over the serial data link.

[0013] In one aspect, the data frame is encoded by apply-
ing bit rotation to bits of the payload of the data frame in
accordance with value of the encoding parameter, where the
encoding parameter specifies number of bits to shift bits in
the payload of the data frame. More specifically, the data
frame is encoded by applying bit rotation to bits of each byte
in the payload of the data frame in accordance with the
encoding parameters, where the encoding parameters
includes a value for each byte of the payload and each value
specifies number of bits to shift bits in corresponding byte.
[0014] In another aspect, the integrity parameters is
defined to include an identifier for the given electronic
control unit and a position at which the identifier is inserted
into the payload of the data frame. The integrity parameters
may also include a counter value.

[0015] The secure messaging scheme also encompasses
other electronic control units in the vehicle network. Upon
receiving the acknowledgement message from the given
electronic control unit; another electronic control unit
extracts the integrity parameters for the given electronic
control unit and stores the integrity parameters for the given
electronic control unit in a memory of the another electronic
control unit.

[0016] Upon receiving the encoded data frame from the
given electronic control unit; the another electronic control
unit reverses (or decodes) bit rotation of bits in the payload
of the encoded data frame in accordance with value of the
encoding parameter; extracts the integrity parameters from
the payload of the encoded data frame; and authenticates the
encoded data frame using the extracted integrity parameters.
Authenticating the encoded data frame includes comparing
the identifier for the given electronic control unit extracted
from the encoded data frame with the identified of the given
electronic control unit stored in the memory of the another
electronic control unit. Authenticating the encoded data
frame may further include comparing the counter value for
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the given electronic control unit extracted from the encoded
data frame with the counter value of the given electronic
control unit stored in the memory of the another electronic
control unit, and incrementing the counter value stored in the
memory of the another electronic control unit when the
counter value for the given electronic control unit extracted
from the encoded data frame matches the counter value of
the given electronic control unit stored in the memory of the
another electronic control unit.

[0017] In one embodiment, the initialization message is
decrypted using a cryptographic key before extracting the
encoding parameters therefrom, where the cryptographic
key is shared with the gateway.

[0018] In another embodiment, the secure method is
embodied is in a non-transitory computer-readable medium
having computer-executable instructions that, upon execu-
tion of the instructions by a processor of a computer, cause
the computer to perform the steps of claims 1-10.

[0019] Further areas of applicability will become apparent
from the description provided herein. The description and
specific examples in this summary are intended for purposes
of illustration only and are not intended to limit the scope of
the present disclosure.

DRAWINGS

[0020] The drawings described herein are for illustrative
purposes only of selected embodiments and not all possible
implementations, and are not intended to limit the scope of
the present disclosure.

[0021] FIG. 1 is a diagram of an example data frame
structure for a Controller Area Network;

[0022] FIG. 2 provides an overview of the handshake
phase between the gateway and the two slave ECUs.
[0023] FIG. 3 further illustrates the message content dur-
ing the handshake process in an example embodiment.
[0024] FIG. 4 is a flowchart showing the step for broad-
casting a data frame across the vehicle network by a given
electronic control unit.

[0025] FIG. 5 is flowchart showing the steps for process-
ing a data frame received by a recipient electronic control
unit.

[0026] FIG. 6 is a graph showing the cumulative distri-
bution function of used bits for different vehicles.

[0027] FIG. 7 is a graph showing the number of used bits
of fixed-periodic CAN messages with exactly the same cycle
time.

[0028] FIG. 8 is a graph showing the latency for different
encryption algorithms.

[0029] FIG. 9 is a table showing comparison of different
messaging schemes.

[0030] FIG. 10 is a table showing the number of rebalan-
cable and existing CAN IDs with free space.

[0031] FIG. 11 is a table showing different metrics for
various encryption methods.

[0032] FIG. 12 is a table showing cracking success based
on trace length.

[0033] FIG. 13 is a table showing brute-force success for
top candidates.

[0034] FIG. 14 is a table showing the timing analysis for
full traces.

[0035] Corresponding reference numerals indicate corre-

sponding parts throughout the several views of the drawings.
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DETAILED DESCRIPTION

[0036] Example embodiments will now be described more
fully with reference to the accompanying drawings.

[0037] S2-CAN messaging scheme of tis disclosure tries
to protect the confidentiality, authenticity and freshness of
CAN data during operation of the vehicle without using
cryptography. In particular, S2-CAN consists of two phases
in its core: a handshake phase and an operation phase. In the
former, it establishes unique sessions of specific length and
distributes necessary session parameters to all participating
ECUs. This phase resembles the key management phase in
traditional S-CAN approaches where session keys are shared
among the ECUs to both encrypt and authenticate CAN
messages in their respective operation phase. Since S2-CAN
avoids using cryptography in its operation phase, it uses the
session parameters from the handshake to (a) first include a
randomly generated internal ID and counter for authenticity
and freshness into the CAN payload before (b) each byte of
the payload is shifted cyclically by a random integer (encod-
ing parameter) in fixed time intervals. These two steps can
be compared to (a) appending a MAC to provide authentic-
ity and (b) encrypting the plain-text CAN message to
provide confidentiality in S-CAN. Compared to breaking
traditional CAN authentication solutions that only require
brute-forcing the MAC, the cyclic shift encoding further
masks the plain-text by making it more difficult to decode
and thus provides confidentiality protection as well. Due to
the encoding, CAN reverse-engineering—which is the first
essential step of a CAN injection attack—has to be per-
formed in real time for the current encoding parameter and
cannot be computed a priori to be used for the lifetime of the
vehicle. Despite intentional weaker security of S2-CAN, a
frequent update of sessions with new encoding parameters
will render reverse-engineering very tedious, if not impos-
sible. Hence, session cycle is a crucial parameter to provide
security in S2-CAN. Furthermore, even after guessing the
encoding correctly, an attacker would still need to calculate
the internal ID and counter to bypass authentication.

[0038] Vehicular sensor data is collected from in-vehicle
ECUs. The latter are typically interconnected via an in-
vehicle network (IVN), with the CAN bus being the most
widely-deployed bus topology. FIG. 1 depicts the structure
of the most common CAN 2.0A data frame. The three
shaded fields are essential for the understanding of CAN:
CAN ID, DLC and data.

[0039] CAN is a multi-master, message-based broadcast
bus that is message-oriented. CAN frames do not contain
any information regarding their source or destination ECUs,
but instead each frame carries a unique message 1D that
represents its meaning and priority. Lower CAN IDs repre-
sent higher priority or criticality.

[0040] Data is the payload field of a CAN message con-
taining the actual message data of length of 0-8 bytes
depending on the value of the DLC field. The payload field
consists of one or more “signals,” each representing infor-
mation like vehicle speed. Messages transmitted with the
same CAN ID usually contain related signals. Raw CAN
data is not encoded in a human-readable format and does not
reflect the actual sensor values. In order to obtain the actual
sensor values, raw CAN data must first be decoded. Letting
r,, mg, t, and d, be the raw value, scale, offset, and decoded
value of sensor s, respectively, the actual value can be
determined as follows:
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[0041] Al recorded CAN data can only be interpreted
using the translation tables for that particular vehicle. The
most common format used for this purpose is DBC which
contains information about available signals in each CAN
1D, their scale and offset, as well the senders and receivers
of CAN messages. In order to execute a successful spoofing
attack (i.e., with a visible outcome towards vehicle opera-
tion), the CAN payload has to be carefully crafted by the
attacker. As a result, an adversary needs to determine the
scale and offset for the CAN signal they want to spoof.
Furthermore, some DBCs store if a CAN message is peri-
odic (including its cycle time) or sporadic. Note that this
disclosure only concerns modifying the CAN payload/data
field and NOT the CAN ID to preserve backward-compat-
ibility and not interfere with schedulability.

[0042] There are multiple CAN buses (e.g., powertrain,
infotainment) in the vehicle that are separated via a gateway
ECU. It is possible to physically tap into any CAN bus
domain (after removing plastic compartments) by using an
Arduino with a CAN bus shield. Another—more realistic—
way of accessing the CAN bus is the on-board diagnostics
(OBD-II) interface under the steering wheel which is man-
datory for all gasoline cars in the US since 1996. OBDII
tools are manifold and cheap. Theoretically, it is possible to
read and write the CAN traffic on all in-vehicle buses
through the OBD-II interface. In practice, however, not all
buses are mirrored out to it. This can be explained by access
control that OEMs implement. Nevertheless, previous lit-
erature has shown that CAN injection through the OBD-II
port is possible in numerous cars. While reference is made
throughout this disclosure to CAN, it is readily understood
that the broader aspects of this disclosure are applicable to
other types of vehicle networks.

[0043] The common and final part of every automotive
attack—which is the main threat to protect against—is to
gain access to the CAN bus for a CAN injection attack
which can lead to various forms of vehicle misbehavior,
including (safety-critical) sudden acceleration. In general,
there are two ways an attacker can achieve CAN bus access:
(a) by connecting a physical CAN device/ECU to the IVN,
e.g., an OBD-II dongle or by tapping into the CAN bus, or
(b) compromising an existing ECU remotely. The former is
relatively easy to accomplish as long as the attacker has
physical access to the target vehicle, while the latter is more
complicated and multi-layered (and thus less likely) as the
attacker has to usually leverage vulnerabilities in wireless
interfaces of an ECU to gain access to the device. We refer
to the attacker in case of (a) as an external attacker, whereas
an internal attacker is capable of (b). Furthermore, the
aforementioned separation of domains by a central gateway
complicates a compromised ECU—which is usually on a
less safety-critical bus (e.g., infotainment)—to affect more
safety-critical domains such as powertrain which has no
remote attack surfaces. Finally, even if a proper S-CAN
approach is implemented, an internal compromise of an
ECU (as in case (b)) will lead to exposure of secret keys
which the attacker can use to forge the desired message’s
Message Authentication Code (MAC) and/or encrypt the
CAN payload.

[0044] Although remote attacks on vehicles have skyrock-
eted over the last decade, a breakdown of attack vectors
shows that most of these remote attacks are targeting key
fobs, OEM servers and mobile companion apps. Remote
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attacks to compromise an ECU usually exploit the In-
Vehicle Infotainment (IVI) and require significant effort
(usually multiple months) as shown in the Jeep Cherokee
hack to achieve CAN bus access and cannot be thwarted
even by a properly secured CAN bus (S-CAN). In contrast,
OBD-II attacks are the fourth most common attack vector
and account up to over 10% of all attacks. Nevertheless,
recent research has shown that remote attacks can also be
launched by an external adversary by exploiting vulnerabili-
ties in wireless OBD-II dongles. Many commercial OBD-II
dongles feature Wi-Fi or Bluetooth capabilities which open
a new over-the-air attack surface. The researchers’ findings
show that CAN injection can also be performed by remote,
external attackers. As a result, external attackers in scenario
(a) form the most crucial threat. In what follows, we will
focus on protection from this type of adversaries and
describe their attack capabilities.

[0045] Once CAN bus access has been achieved, the
attacker will continue a CAN injection attack. This disclo-
sure introduces three possible CAN injection attacks as
discussed next. Fabrication attacks allow the adversary to
fabricate and inject messages with a forged CAN header and
payload at a higher frequency to override cyclic CAN
messages sent by legitimate ECUs that can render safety-
critical receiver ECUs inoperable. Suspension attacks on the
compromised ECU prevent its broadcast of legitimate,
potentially safety-critical CAN messages to the intended
recipient(s). Finally, masquerade attacks combine both of
the above attacks by suspending the CAN broadcast of one
ECU and deploying another ECU to fabricate malicious
CAN messages. Only fabrication attacks can be mounted by
our adversary from scenario (a), since the others require an
internally compromised ECU. Fabrication attacks can not
only be mounted by attackers having physical access to the
car, but also by remote attackers which makes external
attacks from scenario (a) an highly likely and scalable threat.
[0046] As a result, one can assume the (external) adver-
sary to only be able to perform fabrication attacks in the
threat model. Even then, the attacker can cause havoc for
both vehicle and driver, as shown in the Toyota Prius hack.
To prevent fabrication attacks, a solution for secure CAN
must have the following two security properties: authenticity
and confidentiality. Each of these properties are discussed
below.

[0047] As outlined before, any CAN node can join the
IVN. There is no provision of verifying the authenticity of
an added malicious device to the CAN bus by default. So,
device authentication is important, i.e., only pre-authorized
ECUs will be allowed to communicate. Furthermore, an
attacker should not be able to spoof legitimate CAN mes-
sages during a fabrication attack. This can be prevented by
adding a MAC to each message to ensure integrity. The latter
also includes protection against replay attacks by adding a
counter to each message. The major drawback of protecting
against fabrication or replay attacks is the required addi-
tional space for MACs and freshness values. This is chal-
lenging because CAN only has an 8-byte payload field, with
most of the space already occupied by control data.

[0048] CAN message data is not encrypted, and therefore,
messages between ECUs can be eavesdropped and analyzed
by anyone accessing the IVN. To prevent this type of attack,
mechanisms to guarantee confidentiality are required. As
mentioned before, plaintext data can be recorded and used
for reverse-engineering the proprietary CAN message for-
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mat (i.e., signal location, scale and offset) which can be
ultimately used to craft well-formed CAN messages in a
fabrication attack to cause visible damage. Encryption with
symmetric session keys between participating ECUs is a
solution, although it will incur additional latency overhead.

[0049] This disclosure presents a system design comprised
of three phases: key management, a handshake phase, and an
operation phase. Although no cryptography will be used in
the operation phase, establishing a session S, during the
handshake phase needs the distribution of keys which will
be briefly discussed below. For illustration purposes, the
vehicle network is comprised of two slave ECUs and one
master ECU which is the central gateway. The master ECU
will be responsible for establishing new sessions during the
handshake phase. There is no real value of expanding the
testbed to more than two slave ECUs since the benchmark
below shows that S2-CAN does not add any communication
overhead and is thus independent of traffic/bus load during
the operation phase, i.e., when operation-related CAN mes-
sages are exchanged between ECUs. S2-CAN is applied to
each CAN sub-bus independently. As a result, the OEM can
choose which CAN buses to protect. The syntax used is as
follows: m=(CAN_ID, Payload) for a CAN message m
exchanged on the bus. Furthermore, a logical ordering of the
slave ECUs is required for error handling and timeout
purposes during the handshake phase, i.e., that ECU , trans-
mits before ECUj. The ordering can be assigned randomly
(as in this case) or according to criticality/relevance of the
ECU, with the more safety-critical slave ECU being
assigned as ECU . This knowledge of ordering can be stored
as an additional one-byte unsigned integer in each ECU’s
non-volatile memory.

[0050] S2-CAN refrains from using Message Authentica-
tion Codes (MACs) and encryption based on cryptographic
keys during the vehicle’s operation mode. During the hand-
shake phase, S2-CAN-specific session parameters are dis-
tributed from the master ECU (gateway ECU ) to the two
slaves ECU, and ECUyg on a safety-critical CAN domain
named CAN,. These session parameters establish a new
S2-CAN session S, that is valid for a Session Cycle T. To
distribute these parameters securely in each session, cryp-
tography is used during the handshake phase. This requires
the existence of pre-shared secret keys that are provided by
the key management system in a vehicle. Since a detailed
discussion of key management is not in the scope of this
disclosure, symmetric keys are pre-installed on each ECU. It
is understood that different known techniques for distribut-
ing key can be used. Nevertheless, the use of short-lived
session keys is recommended to limit exposure of the
long-term key which would allow eavesdropping attacks on
the handshake and thus fully compromise S2-CAN.

[0051] Upon initialization, ECU, ECU, and ECUg on
CAN;, will perform a 3-way handshake in order to exchange
the information about the aforementioned session param-
eters and agree on “talking” in S2-CAN syntax. In an
example embodiment, the session parameters consist of a
global (a) encoding parameter f, (b) a slave ECU-specific
integrity parameter int_ID,, (c) a slave ECU-specific integ-
rity parameter posint, j, and (d) a slave ECU-specific counter
value cnt;, with j denoting the respective slave ECU. Param-
eter (a) will be distributed in Stage 1, whereas the other three
parameters (b)-(d) will be exchanged between ECUs in
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Stage 2. The handshake comprises three stages and repeats
for each new session S, in periodic fixed-intervals T which
represents the session cycle.

[0052] FIG. 2 provides an overview of the handshake
phase between the gateway and the two slave ECUs. The
gateway starts a new session by broadcasting an initializa-
tion message over the serial data link of the vehicle network.
The initialization message includes the session parameters
noted above.

[0053] Upon receipt of the initialization message, each
slave ECU is configured to store the session parameters in a
memory of the ECU. In response to receiving the initializa-
tion message, each slave ECU will also broadcast an
acknowledgement message over the vehicle network. The
acknowledgement message includes integrity parameters
that are associated with the ECU. Lastly, the gateway
finalizes the handshake phase after receiving the acknowl-
edgement message from all of the slave ECUs. To do so, a
finalization message is sent from the gateway to the slave
ECUs. While some of the messages are shown as being
sequential, it is understood that these messages may be
broadcast concurrently in some vehicle networks.

[0054] FIG. 3 further illustrates the message content dur-
ing the handshake process in an example embodiment. In
this example, the handshake process is described for an
arbitrary session S,. The communication diagram for hand-
shake phase is separated into the three stages. The CAN IDs
used for messages during the handshake are merely
examples, but should have a low ID or high priority.

[0055] Stage 1 (Initialization): The master ECU (ECU ;)
indicates that it wants to start a new session S,. It randomly
generates an 8-byte encoding parameter f,=(r,, r,, 15, I3, I,
Is, e, ), 1, €[]0, 7]. r; corresponds to the bit rotation number
for the 1 byte in the 8-byte CAN payload. Each r, can be
expressed with 3 bits for a total of 3 bytes to include in the
payload p of the gateway initialization message Mgy~
(0x010, p). As discussed before, due to the sensitivity of
handshake messages, each CAN message during the hand-
shake has to be both authenticated and encrypted to prevent
spoofing and eavesdropping, but also replay attacks. To
achieve the latter, first add a 2-byte counter cnt,, (not to be
confused with the ECU-specific session parameter cnt,) to
defend against replay attacks. In order to prevent spoofing
attacks on this message, calculate the SHA256-HMAC of
the previous 5 bytes (i.e., f; and cnt,) to obtain a 32-byte
output with the symmetric key k from Phase 0. Since the
payload of mgy,,;,, only has another 3 bytes of free space
to fit the MAC which would be too small to defend against
brute-force attacks, we have to truncate the HMAC (taking
the MSBs per definition). The truncation can be done safely
since the increased advantage of the attacker would be offset
by the limited availability of a CAN message due to the
cyclic message nature of CAN and the invalidation through
the counter value cnt,. Nevertheless, three bytes for a trun-
cated HMAC is too small. As a result, this example splits
MGy e, 0G0 two consecutive CAN messages Mgy iri0
and Mgy, With respective payloads p, and p, to (a)
utilize another 8 bytes for the truncated HMAC, resulting to
a total of 11 bytes, and (b) allow encryption with a secure
block cipher such as AES-128 which has a block size of 16
bytes. In summary, two CAN messages with the following
syntax are broadcast sequentially on CAN1:

mGW,init,i,Oz(oxo 10,enc4z5128k.p1p2) [MSBO0-63])

Apr. 6, 2023

mGW,init,i,l:(ox01 0,en¢ 45128 (kp1llp2) [MSB64-127])

[0056] Stage 2 (Acknowledgment): Upon receiving both
initialization messages from ECU ;;,, ECU , and ECUy first
decrypt the ciphertexts p1 p, and p, using the symmetric key
k and extract the encoding parameter f; into local memory.
Each slave ECU will then broadcast an acknowledgment
(ACK) message m; 4, (which will be split into two mes-
sages again due to AES-128 encryption), where j€[O0, . . .,
N-1], consisting of a 1-byte positive acknowledgment code
(PACK) and the three slave ECU-specific parameters (b)-(d)
in the CAN payload. Parameter (b) is a randomly generated
unique internal ID int_ID &[0, N-1] representing ECU; on
CAN;, during the current session S,. This parameter can be
encoded with 1 byte since a CAN domain (or even vehicle
in general) never has more than 256 ECUs.

[0057] Next, parameter (c) specifies the random position
pos,,,; of where the internal ID (parameter (a)) will be
located within the CAN payload. Since space within the
payload is limited and specific positions are occupied by
CAN signal data that cannot be overwritten, the internal ID
has to be included in available free space. The set of
available free spaces for a CAN ID in a given vehicle is
defined as Y}. Below discusses the distribution of free spaces
among CAN IDs by analyzing the DBCs of 4 different
vehicles. For instance, Y,=12, 13, 14, 25, 26, 54, 55, 63
states that the CAN ID belonging to ECUj possesses only 8
bits of free space over 4 non-consecutive “regions”. This set
of bits is then used by the Free Space (FS) function to
randomly determine the first bit pos,,, ; where int_ID, will be
placed:

int,j

P05, FS(T)) @

In this example, if pos,, =54, the MSB of the one-byte
internal ID will be stored at bit position 54 and the L.SB at
bit position 26.

[0058] The last parameter (d) is the initial value of an
ECU-specific counter cnt; for replay protection and is also
randomly generated. This parameter consists of 2 bytes and
is also included in available free space together with int_ID,
by Eq. 2.

[0059] Besides including these functional handshake
parameters, the ACK messages will also include a 2-byte
handshake counter cnt, and truncated HMAC for integrity
and freshness protection, just like in Stage 1. Obtain 2
consecutive CAN messages broadcast by ECU; that are both
authenticated and encrypted with the following syntax:

int,f

mA,ACK,i,OZ(Il)j: encyzsiskpllp2) [MSBO0-63])

mA,ACK,i,l:(Il)jx encyzsiskpllp2) [MSB64-127])

Due to the aforementioned pre-determined order for all slave
ECUs, ECU, will first transmit with CAN ID 0x011 and
BECUy needs to wait until it has received both m, -, , and
m, 4cx,; from ECUA before it can broadcast mg 4o, o and
Mg yex - Tor the latter two messages, the CAN ID can
simply be incremented by one as depicted in FIG. 3, as each
ECU will use a distinct CAN ID. Once ECUj receives the
aforementioned ACK message, it first extracts the received
integrity parameters into its memory and then repeats the
ACK process for itself. To avoid collisions in internal 1D
assignment, it needs to exclude int_ID, during the random
1D generation.

[0060] Stage 3 (Finalization): ECU 5y, finalizes the hand-
shake after receiving ACKs from all slave ECUs. It sends
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Mgy, With a random non-zero payload to signal that it has
received well-formed ACK messages from all slave ECUs
and monitored a successful handshake. The finalization
message is again split into two CAN messages and broadcast
with CAN ID 0x020.

[0061] Due to authentication, an adversary cannot spoof
the contents of a handshake message. An attacker cannot
replay handshake messages due to the freshness counter, and
eavesdropping attacks can be mitigated by encryption. If any
ACK message takes too long due to bus or ECU errors, the
handshake times out and ECU ;- restarts the handshake with
Stage 1. If the handshake is still unsuccessful even after
repeating it r times, all ECUs on CAN;, can revert to regular
CAN communication until the next start of the vehicle.
Although this countermeasure has been designed for non-
adversarial reliability issues, an adversary still cannot
exploit it. An attacker could launch a Denial-of-Service
(DoS) attack through the OBD-II device by injecting high-
priority CAN IDs (e.g., 0x0) with the goal to circumvent
successful handshakes and downgrade to regular CAN com-
munication. Since vehicles have a holistic security concept
in place, the gateway (which is directly connected to the
OBD-II port) can defend against this availability attack by
discarding injected CAN messages under a certain CAN ID
threshold, i.e., the lowest handshake CAN ID.
[0062] After the handshake for a session S, has been
completed, slave ECUs can start the operation phase of
exchanging regular data on CAN,. An overview of broad-
casting a data frame across the vehicle network by a given
electronic control unit is shown in FIG. 4. First, the given
electronic control unit inserts the integrity parameters into
the payload of the data frame as indicated at 41. In the
example embodiment and to save space in the CAN payload
field, the following operation can be performed on the 1-byte
int_IDj and 2-byte [ cnt] _j that [ ECU] _j stored during the
handshake to calculate the 2-byte parameter qj:
@/~LEFTZEROPAD (int_ID;,8)Ef et . 3)

The payload of a CAN message is being logically ORed with
qj which includes the integrity parameters into the free space
of a CAN message.

[0063] The data frame is then encoded at 42 in accordance
with the encoding parameters. In one embodiment, bit
rotation is applied to the bits of the payload in accordance
with the value of the encoding parameters, where the encod-
ing parameter specifies the number of bits to shift bits in the
payload of the data frame. For example, a Circular Shift
(CS) operation may be performed on the new payload using
the stored encoding parameter f, which does a byte-wise bit
rotation to the Ith byte according to the value of the Ith
element of fi. Other encoding method are also contemplated
by this disclosure.

[0064] Finally, the message is broadcast at 43 on the
vehicle network CAN, . For the next CAN message sent by
ECU, its local counter will be incremented at 44. It is to be
understood that only the relevant steps of the methodology
are discussed in relation to FIG. 4, but that other software-
implemented instructions may be needed to control and
manage the overall operation of the system.

[0065] On the receiver side, the recipient ECUs reverse the
process as seen in FIG. 5. Upon receiving a data frame at 51,
the recipient ECU decodes the data frame as indicated at 52.
In the example embodiment, the ECU reverses the bit
rotation of bits in the payload in accordance with the value
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of the encoding parameters. Continuing the example above,
the ECU rotate each byte of the encrypted payload in the
opposite direction according to r,. The integrity parameters
are then extracted at 53 from the payload of the data frame.
In the example embodiment, the position information is
extracted from pos,,,, , the internal ID is determined and the
counter/freshness value is obtained by XORing it with
int_IDj of the sender.

[0066] Based on these extracted values, the recipient ECU
can authenticate the data frame as indicated at 54. In the
example embodiment, the extracted counter cnt, is compared
with the expected counter for the respective sender. If the
two values match, the local counter for sender ECU; on the
receiver is incremented, and the internal ID of the sender
int_ID; is compared with the stored internal ID for the
respective sender on the receiver ECU. Only if these two
checks do not fail, the recipient ECU can assume that the
message came from a legitimate sender ECU; and start
processing the data in the payload as indicated at 56.
Otherwise, it may either suspect a replay attack or a message
with fabricated information from a malicious ECU and drop
the CAN message as indicated at 57. The operation mode
with the respective encoding and integrity parameters ends
once a new handshake has been completed. A new session
S,.; begins. The operation mode does not get interrupted by
the start of a new handshake to guarantee functionality and
safety.

[0067] Finally, what happens in the case of packet drops
that can happen naturally on the CAN bus. Since each CAN
message has a counter to prevent replay attacks and the
receiver expects the next message with an incremented
counter value, a packet drop can lead to inconsistencies with
the local state counter on the receiver side. In order to
account for packet drops, the receiver ECU will still accept
CAN messages with counter values higher than the previous
message within a specific threshold. The latter depends on
the packet loss rate on the CAN bus which is usually very
robust.

[0068] To gain a better understanding of how many signals
are used in a CAN ID and thus how much of free space (FS)
is available to include our integrity parameters int_ID; and
cnt, this disclosure analyzed the DBC files of four passenger
vehicles from a North American OEM under NDA. Since we
include a 2-byte parameter q; into the CAN payload, only a
maximum of 6 bytes may be used for data. Among all CAN
IDs in each DBC, we identified certain low priority non-
operation-related CAN IDs that do not occur during regular
operation of the vehicle. Hence, we manually removed these
irrelevant CAN IDs for our purposes and analyzed the
remaining operation-related CAN IDs for available unused
space.

[0069] A Cumulative Distribution Function (CDF) for
each vehicle is plotted in FIG. 6. The vertical marker
indicates that all vehicles—with the exception of Vehicle
B——contain between 60% and 80% CAN IDs that have at
least 16 bits of free space. As a result, one can apply
S2-CAN for the majority of CAN IDs, but would like to
analyze how to further improve this metric to maximize the
number of usable CAN IDs. These results are referring to the
free space in the CAN payload/data field and not the CAN
ID field.

[0070] OEMs could re-balance the disparity of available
space in a CAN message with a more careful design of the
CAN communication matrix while still considering func-
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tional requirements. In what follows, this disclosure presents
a possible re-balancing approach. CAN messages are dif-
ferentiated by four types: fixed-periodic, event-periodic,
event-on-change and network management. First, CAN IDs
are grouped based on the sender ECU. As mentioned before,
a sender can transmit multiple CAN IDs with different cycle
times if the CAN ID is fixed-periodic or event-periodic. The
latter message type is similar to fixed-periodic excepta CAN
message is not necessarily transmitted at every cycle time.
Both message types cannot be grouped together.

[0071] As an example, FIG. 7 depicts the number of used
bits of fixed periodic CAN messages with exactly the same
cycle time that a sender ECU transmits on HS1-CAN
(high-speed CAN 1) of Vehicle A. Points above the thresh-
old line of 48 bits depict CAN IDs that do not have sufficient
free space for S2-CAN. Since all vertical dots are grouped
by sender ECU and cycle time, they can be re-balanced by
packing signals of their mean value per CAN ID (depicted
with marker x). For vehicle A HS1, there are a total of 101
fixed-periodic CAN IDs. A mean value below 48 bits
indicates that the CAN IDs in the group can be re-balanced.
27 CAN IDs can be re-balanced this way, besides those
already under this threshold. This experiment is repeated for
all other vehicles and buses for both fixed-periodic and
event-periodic messages. The number of rebalancable and
existing CAN IDs with free space are summarized in FIG.
10. The sum of these two yields the number of usable CAN
IDs for S2-CAN. With the exception of Vehicle. B, around
79-92% of all CAN IDs can be used with S2-CAN for the
more safety-critical HS1-CAN. The remaining non-periodic
CAN IDs can be re-balanced further by OEMs based on
functionality. Finally, no relationship between message pri-
ority and free space can be derived.

[0072] For an experimental setup, a prototype was built
with three CAN nodes, each of which consists of an Arduino
Mega 2560 board and a SeeedStudio CAN shield. This
prototype was set up to operate at a 500 kBit/s baud rate as
in a typical high-speed safety-critical CAN bus. Note that
the entire evaluation is based on a simple scenario with the
sender ECU transmitting only one CAN message. In reality,
multiple CAN messages will be broadcast on the CAN bus
in a relatively short time and CAN scheduling will pick the
highest-priority CAN message to be broadcast first. This will
inherently lead to blocking time t, for lower-priority mes-
sages which depends on the number of higher priority
messages that have to be transmitted first. Nevertheless,
using a simpler setup does not affect the evaluation metrics
except the operation latency which is discussed below.
[0073] Since we want to compare the performance of
S2-CAN with prior work, existing CAN bus encryption
methods are implemented with vatiCAN for authentication.
VatiCAN was chosen among various existing SW-only CAN
authentication approaches due to its decent performance for
both latency and bus load, as well as existing and well-
documented Arduino implementation. Details regarding
vatiCAN can be found in “Vatican-vetted authenticated
CAN bus” In International Conference on Cryptographic
Hardware and Embedded Systems which is incorporated
herein by reference.

[0074] The time it took to complete a handshake while
varying the number of slave ECUs in a CAN domain was
measured. The handshake process is repeated every T. The
old session still continues with the existing parameters until
the handshake is completed. As a result, no critical message
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exchange during the operation mode of the previous session
is interrupted. The handshake of the new session will be
executed in parallel with the operation of the previous
session. The only critical time when the handshake latency
can affect operations of the car is during the initial start-up
of'the car since a session S, of S2-CAN cannot start until the
initial handshake has been completed. A varying number of
slave ECUs were simulated by having the two prototype
ECUs take turns to send ACK of the handshake, in a
ping-pong manner. The DBCs of four vehicles were sur-
veyed to find that each CAN bus has 9-23 different ECUs.
So, in this simulation, a maximum of 25 slave ECUs were
considered. For two slave ECUs, the average total hand-
shake time stands at 303 ms, for five at 529 ms, for ten at 907
ms and for the maximum number of 25 slave ECUs, one can
achieve around 2 seconds of handshake latency t,, i.e., the
car starts talking S2-CAN after 2s when it is powered on.
These calculations also show that each additional slave ECU
on the bus will add an average of 75.5 ms towards the
latency. Furthermore, the handshake process will be started
at P-T-1, ~Q-t, before the current session expires to provide
a smooth transition to the next session. P denotes the session
number and Q the average number of higher-priority CAN
messages that can be expected to cause the blocking of
handshake messages.
[0075] CAN messages have stringent deadlines, i.e., when
they must arrive at the receiver. Modern HS-CAN buses
have minimum cycle times (and thus deadlines) of 10 ms, as
a manual inspection of the four DBCs also confirmed.
Latency measurements are averaged from a sample of 1000
messages sent over 100 seconds, or one message every 100
ms. The E2E latency tg,, was calculated for

[0076] (1) Regular CAN with vatiCAN authentication

(“NONE”),
[0077] (2) 3 DES, TEA, XOR, AES-128 and AES-256
encrypted CAN with vatiCAN authentication,

[0078] (3) and finally S2-CAN.
[0079] In the first case, E2E latency consists of processing
delays of the sender and receiver, the time to calculate the
MAC on the sender and check the MAC on the receiver, as
well as the CAN bus network latency. In the second case,
encryption/decryption latencies are added on the respective
sides. S2-CAN uses the latter calculation methodology as
well, while the MAC and encryption/decryption latencies
are replaced by the delay to calculate/check the internal ID
and counter, and encode/decode through Circular Shift (CS).
[0080] FIG. 8 depicts the breakdown of the E2E latency
for all three aforementioned cases. Furthermore, the dotted
horizontal line indicates the aforementioned deadline of 10
ms. It can be easily seen that the encryption/decryption of 3
DES takes much longer on Arduinos than other encryption
algorithms that can still satisfy the 10 ms deadline. Tiny
Encryption Algorithm (TEA) and XOR seem to satisty it
although they are not considered secure and are thus not
recommended to be used in production. Furthermore, in all
experiments, no additional traffic was included, so that the
reported E2E latencies assume no blocking time due to
higher-priority CAN messages and can be considered a
lower bound. Hence, even AES-128 and AES-256 are likely
to miss the 10 ms deadline if they lose the CAN arbitration
to a message with lower ID. S2-CAN with tz,~414 us
satisfies both deadlines and only adds an overhead of 75 pus
to the E2E latency of a regular CAN message (i.e., no
encryption or authentication).
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[0081] Latency numbers for MAC operations by vatiCAN
are lower in FIG. 8 than the reported 3.3 ms from FIG. 9. A
sponge capacity of c=8 is used instead of the original, more
secure c=128 to provide a lower bound for vatiCAN’s
latency overhead.

[0082] Besides the E2E latency, bus load, CPU overhead,
and memory usage were measured for each encryption
method with and without vatiCAN authentication. The
results are summarized in FIG. 11. The metrics are calcu-
lated for messages exchanged during Operation Mode,
unless noted otherwise.

[0083] The bus load (BL) b is calculated as follows:

rame 1 4
p = Srame Zm L @
Joaud M Pm

where fbaud=500 kBit/s is used as baud rate on the CAN
bus, and pm is used as the period/cycle time of messagem,
and assuming each CAN frame uses 125 bits, sf rame=125.
With regular CAN (no encryption and authentication), send
one message every pm. AES has a block size of 16 bytes and
the maximum size of the payload is 8 bytes. Thus, send two
consecutive messages, each with a period of p,,. With
vatiCAN authentication, an additional MAC is sent after
each message, effectively doubling the bus load. FIG. 11
shows that only S2-CAN does not add any overhead to the
bus load of regular CAN during operation mode, but pro-
vides protections against both confidentiality and integrity.
Note that the bus load does increase during each handshake
due to additional 2(N+2) exchanged messages. Neverthe-
less, the handshake adds an overhead of merely 2.5% to the
bus load.

[0084] CPU overhead (CPUo) cy of ECU, is calculated by
measuring how many idle cycles pass per message. Estab-
lish regular CAN to be the baseline, then calculate overhead
cy for ye {Sender,Receiver} as follows:

cycles,, 5)

c,=1-
cyclespasetines

y

With reference to FIG. 11, one sees that vatiCAN authen-
tication accounts for the largest CPU overhead (with the
exception of 3 DES). The CPU utilization on each ECU
almost doubles. With S2-CAN, there is a negligible CPU
overhead that demonstrates the lightness of this approach on
computational resources.

[0085] Finally, Flash and RAM usage are reported when
the code compiles to the Arduinos. No dynamic memory is
used. All approaches except S2-CAN add up to 30% more
RAM and 70-90% of Flash usage compared to the memory
consumption for regular CAN. The memory consumption
(both RAM and Flash) for S2-CAN is minimal.

[0086] To measure the security level of S2-CAN, one
needs to determine the time an attacker requires to correctly
spoof a specific CAN message. To be more concrete, assume
the adversary will try to accelerate the vehicle by CAN
injection through the OBD-II port. Furthermore, assume that
the gateway blocks CAN messages with IDs under a certain
threshold to secure the handshake and no intrusion detection
system is installed in the target vehicle. Given the current
state of commercial passenger vehicle security, this is a very
likely scenario. In order to affect the acceleration behavior
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by CAN message injection, the adversary needs to know the
message format (i.e., CAN ID, signal position, scale and
offset) of the signal they want to spoof. For regular CAN,
this is possible by existing automated CAN bus reverse-
engineering tools such as LibreCAN. In the following secu-
rity analysis, Phases 0 and 1 of LibreCAN are deployed with
some modifications to adapt to S2-CAN and try to measure
the time an attacker would need to determine the correct
payload to inject into the CAN bus. The modified attack tool
is called LibreCAN+, consisting of three stages that are
discussed below.

[0087] All experiments were conducted using Python 3 on
a computer running 64-bit Ubuntu 18.04.4 LTS with 128 GB
of registered ECC DDR4 RAM and two Intel Xeon E5-2683
V4 CPUs (2.1 GHz with 16 cores/32 threads each). The
security of S2-CAN was evaluated by using one-hour real-
world traces collected from four recent (2016-2019)
vehicles: Vehicle. A is a luxury mid-size sedan, Vehicle B a
compact crossover SUV, Vehicle C a full-size crossover
SUV and Vehicle D a fullsize pickup truck. Vehicles A, C
and D have at least two HS-CAN buses, both of which are
routed out to the OBD-II connector, whereas Vehicle B has
at least one HS-CAN and one MS-CAN, with only the
former being accessible via OBD-II. All raw CAN data was
collected with the OpenXC VL.

[0088] The recorded traces from these four evaluation
vehicles are in regular CAN-syntax. To enable S2-CAN-
compliant communication, the one-hour traces are processed
according to simulated handshake parameters and converted
into S2-CAN-syntax. First, analyze the DBC file of the
vehicle to determine the ECU nodes that are present in the
network, free space of each CAN ID payload, and group
CAN IDs based on the node that emits them since the
handshake assigns the parameters on a per-node basis. Then,
randomly assign each node a unique internal IDe [0, N~
1]. The counter of each node is also initialized to a random
number in range [0, 2'°~1]. Third, assign incrementing
counter values for each CAN message. After specifying
values for the internal ID and counter of each CAN message,
XOR the two values to obtain q, assign it to a free space in
each CAN message (if possible) and finally OR it with the
original payload. In order to be compliant with S2-CAN, the
payload needs to have at least 2 bytes of free space, but these
do not have to be contiguous. CAN IDs are removed from
the trace that do not have the necessary free space. Finally,
perform the byte-wise circular shift (CS) on each remaining
message according to the randomly generated encoding
parameter f.

[0089] First, the adversary can assume that the targeted
CAN signal is two bytes or less in size since this applies to
most powertrain-related signals. In all four vehicles the
target signal is 13 bits long. Next, the attacker can brute-
force the CAN trace with each possible encoding for each of
the 7 pairs of contiguous bytes in the CAN message. The
encoding scheme has 8 possibilities for each byte, so without
accounting for duplicates, there are 8-8-7=448 combinations
an attacker must try. However, because encodings for uncon-
sidered bytes are set to zero, one can reduce this to 400
combinations by eliminating duplicates: One combination of
all zeros, 7-8=56 combinations where all but one byte are
zero, and 7-7-7=343 combinations where all but two con-
tignous bytes are zero. For each potential encoding, the
attacker decodes the trace and runs it through Phases 0 and
1 of the original LibreCAN, resulting in a list of three-tuples
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(candidate CAN ID, encoding, normalized crosscorrelation
score). The pairs with the highest X correlation scores can
then be used in Stage 2. Note that multi-threading is used in
this stage to calculate up to 50 combinations simultaneously.

[0090] For the adversary to successfully spoof a message,
they must be able to increment the message counter to the
correct value. This requires the knowledge of the position of
the counter bits within the message, the value of the counter,
and the internal ID. After determining the top X CAN IDs
by correlation score from Stage 1, the adversary can extract
a subtrace consisting of only the messages for that candidate
CAN ID. With the subtrace in hand, the adversary calculates
the frequency of bit flips for each bit in the subtrace’s
messages, and matches these flip frequencies to what fre-
quency the bits of a counter should be. This is done using
Algorithm 1 shown below.

Algorithm 1 Determine Counter Position

procedure MATCH-FREQUENCY (flip_ fregs, trace__len)
counter__length < min(16, [log, trace__len])
counter__positions< [ ]
for i < counter_ length to 1 do
match < argim({If - 27| : f € flip_freqs})
APPEND(counter_ positions, match)
return counter_ positions

Note that only the lowest | log ,(trace length)|) bits of the
counter can be determined, since these are the only bits that
are guaranteed to flip at least once.

[0091] After determining the position of the counter bits,
the internal ID can be extracted. To do this, the adversary
compares consecutive messages in the subtrace, and sees if
one of the counter bits flips in the second message. If this
occurs, the adversary knows the next lowest bit of the
counter must have been a 1 in the first message. Then, to
extract the internal 1D, the adversary XORs the counter bit
with 1. This is repeated until all bits of the internal ID are
known. This procedure is summarized in Algorithm 2.

Algorithm 2 Determine Internal ID

procedure CALCULATE-INT-ID(counter__pos, subtrace)
c_length <= LENGTH (counter_ pos)
id__length < min(8, ¢_length - 1)
int_id <[]
offset <= ¢__length — id_ length
¢_pos < counter_ pos[offset : c__length]
prev__m < GET(subtrace, 0)
fori < 0 to id_length — 1 do
for m € subtrace do

if m[e_pos[i] ] = prev_m [c_pos[i] ] then
int_id[i] < prev_m[c_pos[i+1] ] D 1
BREAK

return BITS-TO-INTEGER (int__id)

[0092] Now, after obtaining the position of the counter and
the internal ID, the attacker can spoof a message. First, they
use the encoding determined in Stage 1 to decode the latest
message from the desired CAN ID. Next, the attacker
replaces the value of the signal they are spoofing with their
own fabricated value in that message. Before re-encoding
the message with f, the attacker extracts the counter value
from the latest real-time message on the CAN bus, incre-
ments it by 1, and inserts it into their new message. This
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spoofed message will then be injected through the adver-
sary’s rogue node into the CAN bus and accepted by the
respective receiver ECUs.

[0093] The recorded traces of all evaluation vehicles were
around 60 minutes long. In one embodiment, the above
procedure was integrated into an automated CAN message
translator, for example as described in U.S. Patent Publica-
tion No. 2022/0303305 which is incorporated by reference
herein. This new version of the message translator is referred
to herein as LibreCAN+—and evaluated its success on those
four traces using the ground truth DBC files of each vehicle.
The outcome is shown in the last column of the table shown
in FIG. 12. The cracking success is dependent on finding the
correct CAN ID and encoding in Stage 1 (abbreviated at ST1
in the table) by picking the top candidate in the sorted
correlation list, as well as determining the correct internal ID
(ID) and counter (cnt). For Vehicles A, B and C, cracking
S2-CAN with LibreCAN+ works. Vehicle D already failed
in Stage 1 to determine the correct CAN ID for spoofing the
desired signal.

[0094] Furthermore, how a shorter recording would affect
this metric was analyzed. All three stages were re-run with
5%, 10%, 25%, 50% and 75% of full trace length. To avoid
bias towards more city or highway driving, the precision for
all nonoverlapping segments of this trace were calculated.
As can be seen in FIG. 12, traces of 5% and 10% length fail
in most cases. The table is color-coded to indicate the
number of split traces cracked correctly. If all split traces can
be cracked, the traces are highlighted in green. Otherwise, if
under %5 of split traces are unsuccessful, the traces are
highlighted in red, with the remaining portion colored in
orange.

[0095] FIG. 12 only considers those candidates in Stage 1
with the highest correlation score (X=1) that match the
correct encoding and CAN ID as successful. In many cases,
it was observed that the second-best candidate was ideal. As
a result, we also wanted to see if considering the top X={2,
3, 5, 10} candidates from Stage 1 would lead to success in
cracking S2-CAN. If any of the candidates in the top X were
correct, ST1 for the respective vehicle and split trace are
marked as correct. Based on these, the cracking performance
for varying X is summarized n FIG. 13. The values are
reported as average numbers over all four vehicles. Note that
the color coding is different from the table in FIG. 12. Green
cells indicate that the adjacent X value to its right is identical
and thus does not provide a performance improvement.
Consider using at least a trace of 25% length (15 minutes)
and consider the Top 3 candidates for optimal brute-forcing
success.

[0096] So far, it has been observed that brute-forcing
S2-CAN successfully is possible. The total time t, required
by an attacker to crack S2-CAN is the sum of the passive
recording time t,, time t,,, to crack the encoding in Stage 1,
time tst, to determine the integrity parameters in Stage 2 and
time t; to inject a well-formed CAN message on the CAN
bus:

LAl HpHiml, g, (6)

This timing analysis shows that the time to determine the
two integrity parameters int_ID and cnt on the full trace (60
minutes) takes less than one second. The time to inject the
correct CAN message can also occur instantly with minimal
network delay from the workstation to the adversary’s CAN
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node (e.g., an Arduino). Hence, tst, and t; are negligible and
the main contributing factors are t, and t,.

[0097] As shown in FIG. 14, the total time stands at
around t,=70 min for full traces (i.e., t,=60 min). Since the
threat model stipulates that the attacker can also physically
tap into one specific CAN bus (and thus only has access to
one bus), LibreCAN+ is run with messages from Bus 1 only.
Unfortunately, due to architecture specifics of Vehicle B, all
messages are logged on Bus 1, which makes the trace longer
and thus affects cracking time. The attacker can only per-
form a CAN injection attack on a bus equipped with
S2-CAN if the session cycle T is larger than t, since with
each new handshake, new parameters will be generated and
the attacker has to re-do the entire attack. As a result,
S2-CAN is deemed secure if the following condition is met:

tot o >T. @

[0098] An attacker was previously shown to succeed
cracking S2-CAN with less passive recording time t,. Since
less messages have to be processed, t,,; will also be propor-
tionally smaller. With the minimum recording time t, .. to
have a successful outcome, one can now set the maximum
session cycle T, .. It was already determined that a trace
length of t,=15 minutes is sufficient to succeed. The Top X
consideration does not affect the timing since Stage 2’s
contribution is negligible. If the attacker doesn’t achieve the
desired outcome (i.e., vehicle malfunction), they can repeat
the process with the second and third candidates immedi-
ately. For Vehicles A, C and D, t,; stands at less than 3
minutes and for Vehicle B at less than 5 minutes. Hence, the
maximum session cycle T,,,. will stand at 18-20 minutes.
[0099] Based on the results from the previous section, one
can guarantee that S2-CAN is secure if the cycle time T does
not exceed 18-20 minutes. The experiments were conducted
on a machine with relatively good specs. Nevertheless, a
determined attacker can use an even more powerful setup to
brute-force S2-CAN faster. The feasibility of such an attack
depends on the attacker’s incentive, i.e., tradeoff between
monetary cost and dedication towards the outcome.

[0100] To be flexible, an attacker could rent computational
resources online. The main bottleneck of brute-forcing is the
time required in Stage 1. Due to multi-threading the com-
binations, these can be linearly scaled with multiple
instances. The cost of running a comparable instance to this
experimental setup was obtained from Amazon AWS. Their
pricing calculator suggested an on-demand hourly cost of
US$1.088 for an EC2 instance with 32 vCPUs and 64 GB
RAM. In these experiments, the peak RAM usage stood at
16 GB, but with the configured number of cores, EC2 did not
provide any smaller instance. To brute-force S2-CAN with
a passive recording time t,=15 minutes in less than 20
seconds, 10 EC2 instances have to be rented. This sums up
to a monthly cost of $7,972.40 for the attacker. Given that
the attacker only spends t,=15 minutes per attempt (if T>t,),
they could conduct 2880 attempts per month at an average
cost of $2.77 and still fail, if T is set smaller than the
minimum recording time ¢, ;... Although the actual cracking
(i.e., ty,;) can be sped up, t, ,,;, acts as a lower bound to the
total attack time t, and thus the attacker will have no chance
of cracking S2-CAN.

[0101] Finally, S2-CAN’s security is compared with
S-CAN approaches. For instance, vatiCAN discusses how
long it would take to forge the SHA3-HMAC which depends
on the length of the MAC tag. On average, it requires
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QMAC Length-1 o ymbinations to brute-force the MAC which is

depicted in the last column of the table in FIG. 9. The
authors mentioned that it would still take a day to brute-force
all combinations on a powerful in-vehicle ECU, but due to
their nonce update interval of 50 ms (comparable to our
session cycle T), it would be impossible for the attacker to
calculate a correct HMAC. Although the same calculation
cannot be directly applied to S2-CAN due to lack of MAC
and changing position for each CAN message, an online
attacker (i.e., on an in-vehicle ECU) would require

64
(16)z249

combinations to spoof the valid 2-byte integrity parameters
which allows a fair comparison with the other numbers in
FIG. 9. Given modern GPUs’ capabilities, an attacker with
similar cost assumptions from above could brute-force
S2-CAN in multiple hours due to its 49-bit entropy. Such an
attacker would still fail if T,,, =15 minutes.

[0102] The techniques described herein may be imple-
mented by one or more computer programs executed by one
or more processors. The computer programs include pro-
cessor-executable instructions that are stored on a non-
transitory tangible computer readable medium. The com-
puter programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and
optical storage.

[0103] Some portions of the above description present the
techniques described herein in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. These operations, while described func-
tionally or logically, are understood to be implemented by
computer programs. Furthermore, it has also proven conve-
nient at times to refer to these arrangements of operations as
modules or by functional names, without loss of generality.
[0104] Unless specifically stated otherwise as apparent
from the above discussion, it is appreciated that throughout
the description, discussions utilizing terms such as “process-
ing” or “computing” or “calculating” or “determining” or
“displaying” or the like, refer to the action and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories
or registers or other such information storage, transmission
or display devices.

[0105] Certain aspects of the described techniques include
process steps and instructions described herein in the form
of an algorithm. It should be noted that the described process
steps and instructions could be embodied in software, firm-
ware, or hardware, and when embodied in software, could be
downloaded to reside on and be operated from different
platforms used by real time network operating systems.
[0106] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a computer selectively activated or reconfigured
by a computer program stored on a computer readable
medium that can be accessed by the computer. Such a
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computer program may be stored in a tangible computer
readable storage medium, such as, but is not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,
EEPROMs, magnetic or optical cards, application specific
integrated circuits (ASICs), or any type of media suitable for
storing electronic instructions, and each coupled to a com-
puter system bus. Furthermore, the computers referred to in
the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability.
[0107] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus. Various systems may also be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatuses to
perform the required method steps. The required structure
for a variety of these systems will be apparent to those of
skill in the art, along with equivalent variations. In addition,
the present disclosure is not described with reference to any
particular programming language. It is appreciated that a
variety of programming languages may be used to imple-
ment the teachings of the present disclosure as described
herein.
[0108] The foregoing description of the embodiments has
been provided for purposes of illustration and description. It
is not intended to be exhaustive or to limit the disclosure.
Individual elements or features of a particular embodiment
are generally not limited to that particular embodiment, but,
where applicable, are interchangeable and can be used in a
selected embodiment, even if not specifically shown or
described. The same may also be varied in many ways. Such
variations are not to be regarded as a departure from the
disclosure, and all such modifications are intended to be
included within the scope of the disclosure.
What is claimed is:
1. A secure method for messaging in a vehicle network,
comprising:
establishing a data session on the vehicle network by a
given electronic control unit in the vehicle network,
wherein establishing the data session includes:
receiving, by the given electronic control unit, an
initialization message broadcast over a serial data
link by a gateway of the vehicle network, where the
initialization message includes encoding parameters
for encoding data frames;
storing, by the given electronic control unit, the encod-
ing parameters in a memory of the given electronic
control unit; and
broadcasting, by the given electronic control unit, an
acknowledgement message over the serial data link
in response to receiving the initialization message,
where the acknowledgement message includes integ-
rity parameters that are associated with the given
electronic control unit;
broadcasting a data frame across the vehicle network by
the given electronic control unit, wherein the broad-
casting the data frame includes:
inserting, by the given electronic control unit, the
integrity parameters into payload of the data frame;
encoding, by the given electronic control unit, the data
frame in accordance with the encoding parameters;
and
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transmitting, by the given electronic control unit, the
encoded data frame over the serial data link.

2. The method of claim 1 wherein encoding the data frame
further comprises applying bit rotation to bits of the payload
of the data frame in accordance with value of the encoding
parameter, where the encoding parameter specifies number
of bits to shift bits in the payload of the data frame.

3. The method of claim 1 wherein encoding the data frame
further comprises applying bit rotation to bits of each byte
in the payload of the data frame in accordance with the
encoding parameters, where the encoding parameters
includes a value for each byte of the payload and each value
specifies number of bits to shift bits in corresponding byte.

4. The method of claim 1 wherein the integrity parameters
include an identifier for the given electronic control unit and
a position at which the identifier is inserted into the payload
of the data frame.

5. The method of claim 4 wherein the integrity parameters
further include a counter value.

6. The method of claim 5 further comprises

receiving, by another electronic control unit, the acknowl-

edgement message from the given electronic control
unit;

extracting, by the another electronic control unit, the

integrity parameters for the given electronic control
unit; and
storing, by the another electronic control unit, the integ-
rity parameters for the given electronic control unit in
a memory of the another electronic control unit.

7. The method of claim 6 further comprises

receiving, by the another electronic control unit, the
encoded data frame from the given electronic control
unit;
decoding, by the another electronic control unit, bit rota-
tion of bits in the payload of the encoded data frame in
accordance with value of the encoding parameter;

extracting, by the another electronic control unit, the
integrity parameters from the payload of the encoded
data frame; and

authenticating, by the another electronic control unit, the

encoded data frame using the extracted integrity param-
eters.

8. The method of claim 7 wherein authenticating the
encoded data frame includes comparing the identifier for the
given electronic control unit extracted from the encoded data
frame with the identified of the given electronic control unit
stored in the memory of the another electronic control unit.

9. The method of claim 8 wherein authenticating the
encoded data frame includes comparing the counter value
for the given electronic control unit extracted from the
encoded data frame with the counter value of the given
electronic control unit stored in the memory of the another
electronic control unit, and incrementing the counter value
stored in the memory of the another electronic control unit
when the counter value for the given electronic control unit
extracted from the encoded data frame matches the counter
value of the given electronic control unit stored in the
memory of the another electronic control unit.

10. The method of claim 1 further comprises decrypting
the initialization message using a cryptographic key before
extracting the encoding parameters therefrom, where the
cryptographic key is shared with the gateway.

11. The method of claim 1 wherein the serial data link is
further defined as a controller area network.
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12. A non-transitory computer-readable medium having
computer-executable instructions that, upon execution of the
instructions by a processor of a computer, cause the com-
puter to perform:

establishing a data session on the vehicle network by a

given electronic control unit in the vehicle network,

wherein establishing the data session includes:

receiving, by the given electronic control unit, an
initialization message broadcast over a serial data
link by a gateway of the vehicle network, where the
initialization message includes encoding parameters
for encoding data frames;

storing, by the given electronic control unit, the encod-
ing parameters in a memory of the given electronic
control unit; and

broadcasting, by the given electronic control unit, an
acknowledgement message over the serial data link
in response to receiving the initialization message,
where the acknowledgement message includes integ-
rity parameters that are associated with the given
electronic control unit;

broadcasting a data frame across the vehicle network by

the given electronic control unit, wherein the broad-

casting the data frame includes:

inserting, by the given electronic control unit, the
integrity parameters into payload of the data frame;

encoding, by the given electronic control unit, the data
frame in accordance with the encoding parameters;
and

transmitting, by the given electronic control unit, the
encoded data frame over the serial data link.

13. The non-transitory computer-readable medium of
claim 12 wherein encoding the data frame further comprises
applying bit rotation to bits of the payload of the data frame
in accordance with value of the encoding parameter, where
the encoding parameter specifies number of bits to shift bits
in the payload of the data frame.

14. The non-transitory computer-readable medium of
claim 12 wherein the integrity parameters include an iden-
tifier for the given electronic control unit and a position at
which the identifier is inserted into the payload of the data
frame.

15. The method of claim 5 further comprises

receiving, by another electronic control unit, the acknowl-

edgement message from the given electronic control
unit;

extracting, by the another electronic control unit, the

integrity parameters for the given electronic control
unit; and

storing, by the another electronic control unit, the integ-

rity parameters for the given electronic control unit in
a memory of the another electronic control unit.

16. A secure method for messaging in a vehicle network,
comprising:

during a handshake phase, establishing a data session

between a gateway and a given electronic control unit
on the vehicle network, wherein establishing the data
session includes:
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sending, by the gateway, an initialization message
broadcast over a serial data link of the vehicle
network, where the initialization message includes
encoding parameters for encoding data frames;

receiving, by the given electronic control unit, the
initialization message from the gateway;

in response to receiving the initialization message,
storing the encoding parameters in a memory of the
given electronic control unit and broadcasting an
acknowledgement message over the serial data link
by the given electronic control unit, where the
acknowledgement message includes integrity
parameters that are associated with the given elec-
tronic control unit;

during an operation phase, broadcasting a data frame
across the vehicle network by the given electronic
control unit, wherein the broadcasting the data frame
includes:

inserting the integrity parameters into payload of the
data frame;

encoding the data frame in accordance with the encod-
ing parameters; and

transmitting the encoded data frame over the serial data
link.

17. The method of claim 16 wherein encoding the data
frame further comprises applying bit rotation to bits of the
payload of the data frame in accordance with value of the
encoding parameter, where the encoding parameter specifies
number of bits to shift bits in the payload of the data frame.

18. The method of claim 16 wherein the integrity param-
eters include an identifier for the given electronic control
unit and a position at which the identifier is inserted into the
payload of the data frame.

19. The method of claim 16 wherein the handshake phase
further comprises

receiving, by another electronic control unit, the acknowl-

edgement message from the given electronic control
unit;

extracting, by the another electronic control unit, the

integrity parameters for the given electronic control
unit; and

storing, by the another electronic control unit, the integ-

rity parameters for the given electronic control unit in
a memory of the another electronic control unit.

20. The method of claim 19 wherein the operation phase
further comprises

receiving, by the another electronic control unit, the

encoded data frame from the given electronic control
unit;
reversing, by the another electronic control unit, bit
rotation of bits in the payload of the encoded data frame
in accordance with value of the encoding parameter;

extracting, by the another electronic control unit, the
integrity parameters from the payload of the encoded
data frame; and

authenticating, by the another electronic control unit, the

encoded data frame using the extracted integrity param-
eters.



