US 20220303305A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2022/0303305 A1

SHIN et al.

43) Pub. Date: Sep. 22, 2022

(54)

(71)

(72)

(73)

@
(22)
(86)

(60)

AUTOMATED CAN MESSAGE
TRANSLATOR

Applicant: THE REGENTS OF THE
UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US)

Inventors: Kang G. SHIN, Ann Arbor, MI (US);

Mert Dieter PESE, Howell, MI (US)

THE REGENTS OF THE
UNIVERSITY OF MICHIGAN, Ann
Arbor, MI (US)

Assignee:

Appl. No.: 17/763,755

PCT Filed: Sep. 26, 2020

PCT No.: PCT/US2020/052954
§ 371 (e)(D),

(2) Date: Mar. 25, 2022

Related U.S. Application Data

Provisional application No. 62/934,246, filed on Nov.
12, 2019, provisional application No. 62/907,212,
filed on Sep. 27, 2019.

Publication Classification

Int. Cl1.
HO4L 9/40

HO4L 12/40
U.S. CL
CPC ...

(51)
(2006.01)
(2006.01)
(52)
HO4L 63/1441 (2013.01); HO4L 12/40032
(2013.01); HO4L 63/1416 (2013.01); HO4L

2012/40215 (2013.01)

(57) ABSTRACT

One commonality among most vehicular security attacks
reported to date is that they ultimately require write access
to the CAN bus. In order to cause targeted and intentional
changes in the vehicle behavior, malicious CAN injection
attacks require knowledge of the CAN message format.
However, since this format is proprietary to OEMs and can
differ even among different models of a single make of
vehicle, one must manually reverse-engineer the CAN mes-
sage format of each vehicle they target. To mitigate this
difficulty, an automated CAN message translator is pre-
sented.

Bit Positions

3 4 5 6 7

Byte Number
3

NN

/A&i
NN

NN

4
Pd

V
‘\
4
y

N

N
NN
NN

N\

Patent Application Publication Sep. 22, 2022 Sheet 1 of 7 US 2022/0303305 A1

1 Ml 1]]|2]647 \0-64 6 || 2| 7
Bit ¢ Bits/ Bit Bits | ¢ ‘&\ Bits Bits Bits
\. J % \. J \ J & / s \\1 \. J \. VAN J
SOF CANID Remote Reserved Data CRC-15 ACK EOF
Startof Message Trans- Data Cytic Acknow- End of
Frame Identifier mission Length Redun- ledge Frame
Request Code dancy ment
Check
Fig-1

Bit Positions
0 1 2 3 4 5 6 7

Byte Number
3

77
© Fig-2
A
~ = %/%//

Patent Application Publication Sep. 22, 2022 Sheet 2 of 7 US 2022/0303305 A1

OBD-lI
ECU ECU ECU
I I l Infotainment
Powertrain-CAN MOST
ECU
Chassis-FlexRay Central | T
| l | Gateway ECU
~—— ECU }|—
ECU ECU ECU
| [l
Body
Can2 | ECU ECU ECU
ECU ECU ECU
l l !

ECU ECU ECU

Body-CAN 1
Sub-Bus LIN 1 Sub-Bus LIN 2
Fig-3
Events E
I |
Y Y
Phase 0 Phase 1 Rg]:ﬁg%%%e Phase 2 SEi\;[)%rgts
Raw CAN ¥Ro : vRe
Data R Signal | | "s || Stat consiant
OBD-II Extraction messages
Data V ds || Matching CAN
(xcorr) IDs Filter g_ut
d » periodic
IMU Data P >/ Alignment S|y messages
l Top Event-triggered messages y
Scores l Diff I
S=VUP Linear - -
Regression l Filter out powertrain messages |
I I
Y
ids,Starts,ends, ms,ts Ce-:{ide}

Fig-4

Patent Application Publication Sep. 22, 2022 Sheet 3 of 7 US 2022/0303305 A1
Each CAN Trace — Pre-Proc ™ Bit flip rate per bit
Number of » UNUSED, POSS,or
consecutive bits Stage 0 CONST label
|
Y
_. .
Threshold Stage1 = Prelim Bounds
: R —» Bound Label:
Multi-Value » OStage2 = Breaking up POSS
|
Y
- Bound Label:
Staged |, ™ Adding Mult

Fig-5

'

Final Label

Patent Application Publication Sep. 22, 2022 Sheet 4 of 7 US 2022/0303305 A1

Receive Capture
=" Raw Data Reference Data [81
Partition Partition
12— Raw Data Reference Data | 82
Grouping Messages Capture
73— by Message ID Event Data 8
Receive Partition
74— Tagged Data Event Data -84
Determine Filter Messages
75— Similarity Measure with Constant Payload | ~— 85
Identify Highly Filter Messages
76—"1 Correlated Data in Reference State [~— 86
Determine Filter
77—" Data Format Powertrain Messages | ~— 87
. Link MSC IDs
FFi g -/ with Vehicle Function | ~— 88

Fig-8

Patent Application Publication

Sep. 22,2022 Sheet 5 of 7

US 2022/0303305 A1l

[STAGE 1: Constant Messages |

[STAGE 2:Reference Messages |

TRACE (STAGE 3: Powertrain Messages|
TIME D PAYLOAD FILTERED IN
00.000 [700] 1111111100000000 [STAGE 3!
00.001 100 0000000000000000 CANDIDATE
00.002 300 [000002000E20BE20] [STAGE 1]
00.004 900 FFFFFFFFFFFFFFFF CANDIDATE
00.008 300 000002000E20BE20 STAGE 1
00009 300 |000002000E20BE20] [STAGE 1
00.011 600 000000024CB016EA STAGE 2
00.015 800 00000000075BCD15 CANDIDATE
00.016 500] 0000000000000000 [STAGE 3!
00.018 400 [056089000A00A000 | STAGE 2
00020 200 0000000000000000 CANDIDATE
REFERENCE POWERTRAIN

ID PAYLOAD ID CORRELATION SCORE
100 O0O000AOO0AQ000BC300 100 0.7433

200 0070070070070070 200 0.5192

300 00000000075BCD15 300 0.7990

400 [056089000A00A000] | |400 0.6648

500 0012300AE0030000 | |[500 0.9882]

600 [000000024CB016EA| 600 0.7102

700 1000000001100001 | [700_ 0.8361]

800 00000000000000FF 800 0.1034

900 OFOOBY900AOAOFOE | [900 0.2023

Fig-9

Patent Application Publication Sep. 22, 2022 Sheet 6 of 7 US 2022/0303305 A1

1.0

—a— Vehicle A

—&— Vehicle B
08 ﬂ%\ —>— Vehicle C | |

)—}% —m— Vehicle D

= 06
Q
K7
[&]
o
* 04
0.2
0.0 , . . .
0.0 0.2 0.4 0.6 0.8 1.0
Recall .
Fig-10
1
1004 [/ Median Number of Unique CAN IDs Per Event (Veh.A)
/| Total Number of Ground Truth CAN IDs Lost (Veh.A)
4 y Median Number of Unique CAN IDs Per Event (Veh.B)
801 |/ Total Number of Ground Truth CAN IDs Lost (Veh.B)
o /] N Y Median Number of Unique CAN IDs Per Event (Veh.C)
= /| N e Total Number of Ground Truth CAN IDs Lost (Veh.C)
<Z: 604 4 _ § Median Number of Unique CAN IDs Per Event (Veh.D)
2 /] N ‘:\ Total Number of Ground Truth CAN IDs Lost (Veh.D
5 N
[/ \ :‘
£ NN R
E407 VNN N
=z 1 N \ S RN
/] N\ \ N N
N N NI
20_ / \ P 3NN
BN N J N
\7\ i \\ I ~ g
7N 3 NES :
o L RN N NINZEIZENENEY
Raw Constant Reference Powertrain
Stage

Fig-11

Patent Application Publication Sep. 22, 2022 Sheet 7 of 7 US 2022/0303305 A1

/

75‘\ /\\//I
W
//./ \

~J
o

Precision (in %)
(2}
($)]

60
—a— Vehicle A
—ae— Vehicle B
55 o »— Vehicle C H
/ —— Vehicle D
30 40 50 60 70 80 90 100
Trace Length (in %)
Fig-12
— 12 T
16 B |
2101 |
14+ =
2 8f
w12 o
£ g of
S 10} kS T
=" HO g 4 |
8r £
=] 2 -
6 L = N
_ O
1 2 3 4 5 Mistakes Skips
Experience Metrics
Experience-time correlation Key metrics

Fig-13A Fig-13B

US 2022/0303305 Al

AUTOMATED CAN MESSAGE
TRANSLATOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/907,212, filed on Sep. 27, 2019
and U.S. Provisional Application No. 62/934,246 filed on
Nov. 12, 2019. The entire disclosure of each of the above
applications are incorporated herein by reference.

FIELD

[0002] The present disclosure relates to an automated
message translator for messages sent over a vehicle network,
such as CAN.

BACKGROUND

[0003] Nearly all functions inside a modern vehicle, even
in more traditionally mechanical domains like the pow-
ertrain, are controlled electronically. Moreover, purely elec-
tronic systems have become more prevalent as the number
of sensors present in a vehicle has increased, particularly
given the rise of advanced driver assistance (ADAS) sys-
tems. All of these systems are controlled by electronic
control units (ECUs), embedded microprocessors that inter-
face between a given system and the rest of the vehicle. Over
the last few years, the number of ECUs inside a vehicle has
increased significantly. Compared to the early 1990s, when
few ECUs were present in a given vehicle, a modern vehicle
features more than 40 ECUs (as of 2015 in Europe). Mean-
while, premium cars can be equipped with up to approxi-
mately 100 ECUs. These ECUs need to communicate over
a unified communications network that is sophisticated and
robust enough to handle all network traffic inside a vehicle,
particularly for time-critical information. To meet this need,
Bosch introduced the Controller Area Network (CAN) tech-
nology in 1987, which has since become the de facto
standard automotive bus system.

[0004] Data security and privacy are among the most
critical drivers and inhibitors of next-generation mobility
services. Automotive cybersecurity is a relatively young
field, with the first major publications appearing in 2010. In
2015, several attacks were reported, including three major
wireless attacks: an attack on BMW Connected Drive, an
attack on GM OnStar, and the Tesla Door Attack. Although
the first two attacks received some attention, it was not until
Miller and Valasek’s Jeep attack that automotive cyberse-
curity was perceived as a mainstream research and engi-
neering issue. This attack exploited vulnerabilities in the
wireless Telematic Control Unit (TCU) and In-Vehicle Info-
tainment (IVI) system to allow for remote control of a
vehicle. In the first-generation of automotive security
research, attacks were mounted through vehicles’ physical
interfaces, e.g., through the OBD-II port or wired interfaces
on the IVI. Meanwhile, remote or “wireless” attacks exploit
wireless interfaces, such as the Bluetooth, Wi-Fi, or cellular
connections of the TCU, as in the aforementioned Jeep
attack.

[0005] A commonality between wired and wireless attacks
is the need to eventually inject messages onto the CAN bus
in order to make the vehicle act in an undesired or unex-
pected way. Even in the sophisticated Jeep attack, the
researchers had to manually reverse-engineer portions of the

Sep. 22, 2022

CAN bus protocol in order to gain remote control over the
vehicle, e.g., over its steering control. This is a very tedious
process and is not scalable. Additionally, these attacks can
usually only target a specific model or make of vehicle since
message semantics are OEM-proprietary and can even differ
from model to model of the same vehicle make. Academic
offensive automotive cybersecurity research suffers greatly
from this lack of scalability. Although most defensive solu-
tions, such as intrusion detection systems (IDS), do not
require knowledge of the message semantics of a vehicle, a
straightforward and automated mechanism to reverse-engi-
neer CAN bus data could greatly accelerate vulnerability
research and allow software patches to be distributed before
malicious entities become aware of vulnerabilities.

[0006] The current security through obscurity paradigm
pursued by OEMs attempts to prevent wide-scale automo-
tive attacks by keeping CAN message translation tables,
called DBC files, secret (and therefore placing an additional
barrier to vehicle hacking) is outdated and infeasible.
Vehicles should be secure by design and not by choice,
following Kerckhoffs’s principle. Therefore, automotive
Electrics/Electronics (E/E) architectures and networks
should be resilient against CAN injection attacks originating
from external sources, e.g., by firewalling messages from the
OBD-II port, and without making assumptions about the
knowledge of an attacker. In this disclosure, a tool to
automatically translate most CAN messages with minimal
effort is presented and is referred to herein as LibreCAN.
Unlike prior limited research on automated CAN reverse-
engineering, the LibreCAN translator not only focuses on
powertrain-related data available through the public OBD-II
protocol, but also leverages data from smartphone sensors,
and furthermore reverse-engineers body-related CAN data.
The LibreCAN translator is the first system that can reverse-
engineer a relatively complete CAN communication matrix
for any given vehicle, as well as the full-scale experimental
evaluation of such a system.

[0007] This section provides background information
related to the present disclosure which is not necessarily
prior art.

SUMMARY

[0008] This section provides a general summary of the
disclosure, and is not a comprehensive disclosure of its full
scope or all of its features.

[0009] A computer-implemented method is presented for
translating messages sent over a vehicle network. The
method includes: receiving raw data sent over the vehicle
network during a monitoring period; partitioning the raw
data into a plurality of messages, where each message in the
plurality of messages includes a message identifier; group-
ing the plurality of messages into multiple message groups,
where each message group includes messages with a unique
message identifier amongst the plurality of message groups;
receiving tagged data sent over the vehicle network during
the monitoring period, where the tagged data includes an
identifier for a given vehicle parameter and is formatted in
accordance with a standardized protocol; determining a
similarity measure between the tagged data and each mes-
sage group in the plurality of message groups; identifying
one or more message groups in the plurality of message
groups having a high correlation with the tagged data; and

US 2022/0303305 Al

determining a data format for the given vehicle parameter in
the plurality of messages from the one or more identified
message groups.

[0010] In one embodiment, the similarity measure
between the tagged data and each message group in the
plurality of message groups is determined using cross-
correlation.

[0011] Prior to the step of determining the similarity
measure, the tagged data may be temporally aligned with the
plurality of message groups.

[0012] Message groups may be identified by arranging the
message groups in the plurality of message groups in a
descending order according the similarity measures for the
message groups; and selecting the one or more message
groups with the highest similarity measures, such that a
cutoff for the one or more message groups occurs where a
difference between similarity measures for adjacent message
groups exceeds a threshold.

[0013] In some embodiments, a data format for the given
vehicle parameter is determined using linear regression,
such that the data format for the given vehicle parameter
includes a scale and an offset.

[0014] Inanother aspect, a computer-implemented method
is presented for identifying message identifiers associated
with a particular vehicle function. The method includes:
capturing reference data sent over a vehicle network of a
vehicle while an engine of the vehicle is off and no vehicle
functions are performed in the vehicle; partitioning the
reference data into a plurality of reference messages to form
a reference state, where each message in the plurality of
reference messages includes a message identifier and pay-
load data; capturing event data sent over the vehicle network
while a particular vehicle function is performed in the
vehicle and an engine of the vehicle is off; partitioning the
event data into a plurality of candidate messages, where each
message in the plurality of candidate messages includes a
message identifier and payload data; removing candidate
messages from the plurality of candidate messages, where
the payload data from the candidate messages removed from
the plurality of candidate messages matches payload data for
at least one of the references messages in the plurality of
references messages; identifying additional candidate mes-
sages in the plurality of candidate messages, where the
message identifier and the payload data is the same amongst
the additional candidate messages; removing additional can-
didate messages from the plurality of candidate messages;
and associating message identifiers for messages remaining
in the plurality of candidate message with the particular
vehicle function.

[0015] Example vehicle functions may include but are not
limited to lock driver door, unlock driver door, lock passen-
ger door, unlock passenger door, open driver door window,
close driver door window, open passenger door window,
close passenger door window, right turn signal on, right turn
signal off, left turn signal on, left turn signal off, headlights
on, headlights off, open hood, and open trunk.

[0016] Further areas of applicability will become apparent
from the description provided herein. The description and
specific examples in this summary are intended for purposes
of illustration only and are not intended to limit the scope of
the present disclosure.

Sep. 22, 2022

DRAWINGS

[0017] The drawings described herein are for illustrative
purposes only of selected embodiments and not all possible
implementations, and are not intended to limit the scope of
the present disclosure.

[0018] FIG. 1 illustrates a CAN data frame structure;
[0019] FIG. 2 depicts an example of CAN signals;
[0020] FIG. 3 is a diagrams of a typical automotive E/E
architecture;

[0021] FIG. 4 is a diagram showing an overview of the

LibreCAN system design;

[0022] FIG. 5 is a flowchart for the phase 0 algorithm;
[0023] FIGS. 6A and 6B depict the alignment of a phone’s
coordinate system with a vehicle coordinate system;
[0024] FIG. 7 is a flowchart depicting a method for
translating message which may be implemented in phase 1;
[0025] FIG. 8 is a flowchart depicting an example filtering
process in phase 2;

[0026] FIG. 9 illustrates a filtering example for the phase
2 algorithm;
[0027] FIG. 10 is a graph showing the precision-recall

curve for the phase 1 algorithm;

[0028] FIG. 11 is a graph showing the filtering out of CAN
IDs in each stage;

[0029] FIG. 12 is a graph showing the precision of the
phase 1 algorithm with varying trace lengths; and

[0030] FIGS. 13A and 13B are graphs showing the results
in a user-study experiment.

[0031] Corresponding reference numerals indicate corre-
sponding parts throughout the several views of the drawings.

DETAILED DESCRIPTION

[0032] Example embodiments will now be described more
fully with reference to the accompanying drawings.

[0033] Vehicular sensor data is collected from ECUs
located within the vehicle. These ECUs are typically inter-
connected via an on-board communication bus, or in-vehicle
network (IVN), with the CAN bus being the most widely-
deployed technology in current vehicles. FIG. 1 depicts the
structure of a CAN 2.0A data frame 10—the most common
data frame type used on the CAN bus. The CAN data frame
10 includes a start of frame (SOF) field 11, a message
identifier (CAN ID) field 12, a remote transmission request
field 13, a data length code (DLC) field 14, the payload data
15, the cyclic redundancy check field 16, an acknowledge-
ment field 17 and an end of frame field 18. The CAN ID,
DLC and payload data fields are further discussed below.
While reference is made to CAN, it is readily understood
that the techniques presented in this disclosure are appli-
cable to other types of vehicle networks and communication
protocols thereof.

[0034] CAN is a multi-master, message-based broadcast
bus. Unlike better known socket-based communication pro-
tocols like Ethernet, CAN is message-oriented, i.e., CAN
message frames do not contain any information concerning
their source or destination ECUs, but instead each frame
carries a unique message identifier (ID) that represents its
meaning and priority. Lower CAN IDs have higher priority
(e.g., powertrain-vs. body-related information) and will
“win” the distributed arbitration process that occurs when
multiple messages are sent on the CAN bus at the same time.
It is possible for the same ECU to send and/or receive
messages with different CAN IDs. The basic CAN ID in the

US 2022/0303305 Al

CAN 2.0A specification is 11 bits long and thus allows for
up to 2048 different CAN IDs.

[0035] Data length code (DLC) specifies the number of
bytes in the payload (data) field of the message. The DLC
field 14 is four bits long and can specify a payload length
from O to 8 bytes. The payload data field 15 of a CAN
message containing the actual message data. It can contain
0-8 bytes of data depending on the value of the DLC field.

[0036] Next, the structure of a data payload field which
includes one or more “signals™ is described. A “signal” is a
piece of information transmitted by an ECU, such as vehicle
speed. Messages transmitted with the same CAN ID usually
contain related signals (within the same domain) so that the
destination ECU needs to receive and process fewer mes-
sages. For instance, a message destined for the Transmission
Control Module (TCM) might contain both the vehicle
speed (m/s) and engine speed (RPM) signals in one CAN
message. The length and number of signals vary with CAN
ID and are defined in the aforementioned DBC file for the
corresponding vehicle. This translation file specifies the start
position and length of a signal, allowing it to be easily
retrieved from the payload using a bitmask if the DBC file
is available.

[0037] Moreover, signals can not only contain physical
information, but also other types of information, such as:
constants; multi-values; counters and checkcodes. Constants
are values that do not change over time. Multi-values are
values with a domain consisting of only a few constant
values, where two to three changing values are typically
reported inside these types of signals. An example of a
2-value field could be the status of a specific door (e.g., open
or closed). Counters are signals that behave as cyclic coun-
ters within a specific range. These signals could serve as
additional syntax checks or be intended to order longer
signal data at the destination ECU(s). Besides the CRC-15
field at the tail of every CAN frame, the payload can also
contain additional checkcodes, typically as the last signal in
the payload.

[0038] A contrived example is given in FIG. 2 showing
multiple signals of different types (physical signals, multi-
values, counters, CRCs, etc.) embedded in the 8-byte pay-
load of a CAN message. For instance, the top row rows
represents a 2-byte physical signal, part of the third row and
the fourth row represents a 12-bit counter, and the fifth row
represents another 1-byte long physical signal. Several CAN
IDs also contain 1-bit signals that are multi-values, i.e.,
booleans that describe a body-related event (e.g., door is
open/closed). Three status flags are depicted in byte 7 of this
example. The remaining bits of byte 7 represents is a 4-bit
checksum. Unshaded regions are unused, i.e., no signals are
defined in the DBC file. CAN signals are defined by the
OEM and can thus have arbitrary lengths. Some OEMs also
decide not to include specific signal types. For instance,
none of the evaluation vehicles (all from the same OEM)
contain checksums.

[0039] All recorded CAN data can only be interpreted if
one possesses the translation tables for that particular
vehicle. These tables can come in different formats, as there
is no single standard. Examples formats include KCF
(Kayak) and ARXML (AUTOSAR) files. However, the most
common format used for this purpose is DBC, a standard
created by German automotive supplier company Vector

Sep. 22, 2022

Informatik. Although referenced herein, the techniques
described herein are not limited to this particular data
format.

[0040] DBC files contain a myriad of information. How-
ever, to understand this disclosure, one must be aware of the
following information stored in these files. Message struc-
ture by type: CAN ID, Name, DLC, Sender; and signals
located within messages, containing Name, Start Bit,
Length, Byte Order, Scale, Offset, Minimum/Maximum
Value, Unit, Receiver

[0041] The representation of translation data in DBC files
can be con-fusing. CAN data can be represented in either big
endian (Motorola) or little endian (Intel) byte-order. The bits
can also be numbered using either MSBO (most significant
bit first) or LSBO (least significant bit first). However, most
DBC files use the Intel format with LSBO numbering.
Therefore, the start bit included in the signal information
does not describe the actual start bit. Since one need to know
the actual signal boundaries, one need to calculate the true
start bits so that we can, combined with the signal length 1,
obtain the signal end bit e:

s=[%J+7—(s %3), ()
e=s+1-1.
[0042] In order to know which data to reverse-engineer,

one must first determine the information commonly avail-
able in vehicles. This depends greatly upon the age and price
of the vehicle, and can drastically differ even among com-
parable vehicles from different OEMs. As a result, one must
first establish a basic knowledge of the most frequently
deployed ECUs in vehicles and the signals that they transmit
on the CAN bus.

[0043] It is difficult to arrive at a deterministic answer to
this question since this information is only located in DBC
files, which are proprietary to the OEMs. As a result,
reverse-engineering all signals present in a vehicle is nearly
impossible. Thus, one goal of this disclosure is to reverse-
engineer the most common subset of vehicular signals that
are of interest to both security researchers and third-party
app developers. After analyzing multiple sources, a list of
ECUs typically present in a vehicle was derived (each of
which usually transmits data using one or more CAN
message [Ds), along with the signals present in their respec-
tive CAN messages (see, Table 8 in Appendix A).

[0044] Raw CAN data is not encoded in a human-readable
format and does not reflect the actual sensor values. In order
to obtain the actual sensor values, raw CAN data must first
be decoded. Letting r,, m,, t, and d, be the raw value, scale,
offset, and decoded value of sensor s, respectively; the actual
value can be found with the following equation:

d=mg v+t 2)

[0045] There are four major bus systems used in cars:
CAN, FlexRay, LIN, and MOST. The latter is used for
multimedia transmission; whereas, the other bus types are
mostly used for control tasks, e.g., in the powertrain domain.
The most widely used in-vehicle network (IVN) architecture
is the central gateway architecture. An overview of the buses
and their interconnection within a vehicle is shown in FIG.
3.

US 2022/0303305 Al

[0046] The major point of entry into a vehicle for data
collection (and diagnostics) is the on-board diagnostics
(OBD-II) interface. This connector is mandatory for all
vehicles sold in the US after 1996.

[0047] Generic sensors, such as vehicle speed, engine
speed, intake temperature, mass airflow, etc., are universally
available in all vehicles (after 1996) via the standardized
OBD-II protocol. Apart from the standardized OBD-II pro-
tocol (called SAE J/1979), this port can also be used to both
read and write raw CAN data. Note that the OBD-II protocol
and OBD-II interface are different and should not be con-
fused.

[0048] OBD-II data can be accessed by anyone through
aftermarket dongles. The OBD-II protocol uses the CAN bus
at the physical layer in all newer vehicles. It is a request-
response protocol that sends requests on CAN ID 0x7E0 and
obtains responses on Ox7E8. For instance, to obtain the
vehicle speed, a dongle connected to the OBD-II port sends
a CAN message with ID Ox7EO0 and payload
0x02010D5555555555. The first byte (0x02) indicates that
2 more bytes will follow, the second byte (0x01) corre-
sponds to the OBD mode of getting live data, and 0x0D
indicates vehicle speed. Unused bytes are set to 0x55
(“dummy load”) and ignored. A complete specification is
available, for example in Wikipedia.

[0049] Note that the OBD-II protocol is public and does
not make any use of DBC files at all. Only certain emission-
related sensors can be read. Body-related signals are not part
of the OBD-II specification. Nevertheless, signals in the
aforementioned specification are still available in the raw
CAN protocol. However, one would still like to locate the
CAN IDs and signal positions of emission-related signals on
the CAN bus. For CAN injection attacks, one needs to know
this information because the OBD-II protocol does not allow
writing arbitrary values to these sensors.

[0050] Since any node can tap into the unencrypted CAN
bus and start broadcasting data without prior authentication,
a malicious entity can gain access to the in-vehicle network
by using an OBD-II dongle as a CAN node and send
messages (e.g., through a mobile app). If the message
semantics (i.e., the DBC file(s) or portions thereof) are
known to the attacker because they reverse-engineered the
CAN bus, they can cause the vehicle to misbehave by
affecting the operation of receiver ECUs. This can range
from displaying false information on the instrument cluster
to erroneously steering the vehicle. The latter impacts
vehicle safety and, therefore, poses greater risk. Further-
more, it is also possible to cause certain ECUs to fail,
possibly incurring operational/financial damage to the
vehicle.

[0051] Theoretically, it is possible to monitor the traffic on
all in-vehicle buses through the OBD-II interface. In prac-
tice, however, not all buses are mirrored out by the central
gateway, which is responsible for routing CAN messages
between buses or domains. This can be justified as a security
countermeasure, but the OBD-II connector has only 16 pins,
with some pins already assigned, and thus only up to three
CAN buses can be monitored through the OBD-II port.
[0052] FIG. 4 provides an overview of an automated CAN
message translator system 40. The CAN translator system 40
is comprised generally of three phases: signal extraction and
alignment (phase 0), message translation (phase 1), and
message identification (phase 2). Each of these phases is
described in more detail below.

Sep. 22, 2022

[0053] Three sets of signals serve as input to the CAN
translator system 40. P is the set of IMU sensor data (called
“motion sensors” in Android), i.e., 3-dimensional acceler-
ometer and 3-dimensional gyroscope data collected from a
smartphone (via the Torque Pro app) while recording OBD-
II data (V). V is the of OBD-II data which consists of all
OBD-II PIDs that the vehicle supports. The sampling rate
depends on the used data collection dongle and vehicle. In
one example, the data is resampled to 1 Hz. R is the set of
raw CAN data that is recorded with the OpenXC dongle. The
data set includes the entire trace of driving data broadcasted
on the CAN bus and is accessible through the OBD-II port.

[0054] Phase O is primarily concerned with signal extrac-
tion and alignment. CAN messages can contain multiple
signals, and hence one needs to extract the signals associated
with each CAN ID. The signal extraction mechanism in this
phase is built on top of the READ algorithm as described by
Marcheti et. al. in “READ: Reverse Engineering of Auto-
motive Data Frames” IEEE Transactions on Information
Forensics and Security 14, 4 (April 2019) which is incor-
porated herein by reference. Using the rate at which the
value of each bit changes, the READ algorithm determines
signal boundaries under the assumption that lower-order bits
in a signal are more likely to change more frequently than
higher-order bits. The READ algorithm labels each
extracted signal as either a counter, a cyclic redundancy
check (CRC), or a physical value based upon other charac-
teristics of the bit-change rate of the particular signal. For
example, counters are characterized by a decreasing bit-flip
rate, with the latter approximately doubling as the signifi-
cance of the bit rises. Meanwhile, CRCs are characterized by
a bit-change magnitude of approximately O.

[0055] Physical signals (PHYS) are signals that do not fit
into either of the above two categories. In this disclosure,
three special types of physical signals are defined: UNUSED
signals (all bits set to 0), CONST signals (all bits constantly
set to the same value across messages, but with at least one
bit set to 1), and MULTT signals (the value of the signal is
from a set of n possible values).

[0056] In this disclosure, the mechanism of the READ
algorithm is modified to determine signal boundaries. The
original READ algorithm marks a signal boundary when the
value of [log, , Bitflip] for a bit decreases as compared to the
previous bit. However, the modified implementation of the
READ algorithm instead checks whether the bit-flip rate
decreased by a specific percentage from the previous bit—
this value was set via an input parameter to the algorithm
discussed below. In this implementation, pairs of consecu-
tive bits whose bit-flip rates change from (>0.1 to <0.1),
(>0.01 to <0.01), or (>0.001 to <0.001) would indicate a
signal boundary. However, with the modification, a change
in bit-flip rate from 0.9 to 0.2 would only indicate a
boundary with any percentage threshold less than 77%. It
was found that using a percentage decrease allowed one to
extract more signals correctly than the original READ
algorithm.

[0057] FIG. 5 is a flowchart of an example algorithm for
implementing Phase 0. In a pre-processing stage 51, a CAN
trace is parsed in order to obtain the bit-flip rate of each
payload bit. To achieve this, the number of times the value
of each bit changes in the payload of a given CAN ID is
counted and then this number is divided by the number of
messages in the trace with this CAN ID.

US 2022/0303305 Al

[0058] In Stage O, the stage separates bits into three bins:
UNUSED, CONST, and POSS signals (possibly a COUN-
TER, MULTI, CRC, or physical signal PHYS) as indicated
at 52. This stage generates the preliminary signal boundaries
and labels for each signal from the above three categories.
[0059] To achieve this, the bits from the previous stage are
separated into two sets: those that change and those that do
not. These bits are then grouped together into signals with
preliminary boundaries, assigning the boundaries based
upon where regions of bits that change transition regions of
bits that do not, and vice versa. The regions of bits that
change are assigned the preliminary label of POSS and are
left to be processed later. Meanwhile, the bits that do not
change are processed using Algorithm 1 below. Algorithm 1
[0060] Stage O

procedure stageO(trace_file, T,0.0, Tpo,1)
bits_that_dont_change label<[]
for 1, r € bits_that _dont_change do
if True € changes|l : r] then
bits_that_dont_change_label.append(CONST)
break
else if r - 1 < Tpg then
reinserted < false
for | ¢, r_c € bits_that_change do
iflc==r+1landrc-1lc> Tpo,1 then
lece1
reinserted < false
delete |, ¢
break
if reinserted == false then
bits_that_dont_change_label,append(UNUSED)

Two configurable parameters are defined for the algorithm,
namely T,, 5 and T, ;. The former is the length that a signal
must have to be considered an unused signal. If a signal is
shorter than this length, one can attempt to append it to the
next signal. This is because one can assume that, if there is
a short unused field, it actually contains the MSBs of the
adjacent signal for which a change in value was not
observed. For example, if 8 bits are used to express the speed
in MPH, the most significant bit would not change unless the
trace included driving over 128 mph). T, is used to
determine how long the next signal must be in order to have
bits appended to it in this manner. This is necessary since it
does not make sense to always re-append unchanging bits as
the MSBs of the next signal.

[0061] In Stage 1, this stage is similar to the READ
algorithm and evaluates all possible signal boundaries and
their bit-flip rates as indicate at step 53. It iterates from the
LSB of a signal to the MSB of the next adjacent signal,
searching for a decrease in bit-flip rate. However, unlike the
READ algorithm, this stage looks for a certain percentage
decrease, denoted as T, ,. For example, if T, ,=10%, one
would mark a signal boundary when the bit-flip rate
decreases by greater than 10%. The output of this phase is
an array of boundaries that contains all partitions within the
boundaries of the previously marked POSS signals. This
output contains the final signal boundaries that are used in
the remainder of the evaluation.

[0062] In Stage 2, the stage evaluates all signal boundaries
marked POSS and determines the number of unique values
they contain throughout the trace as indicated at 54. To
achieve this, the trace is parsed to determine the number of
unique values that each extracted signal from Stage 1 is set
to—if this number is less than a pre-determined threshold

Sep. 22, 2022

(Tp0, 3), the signal is not considered in future stages. Any
remaining POSS signals at the end of this stage are marked
as MULTI values. The output of this phase is a new signal
labeling set, now additionally containing signals labeled as
MULTT signals.

[0063] In Stage 3, this stage is also similar to the READ
algorithm and evaluates any values still labeled as POSS to
determine if their bit-flip rates resemble a counter as indi-
cated at 55. If this is not the case, the signal is labeled as a
PHYS value.

[0064] Phase 0 may also encompasses phone alignment.
As FIG. 6 shows, the vehicular coordinate system is not
necessarily consistent with the phone’s coordinate system,
particularly if the user moves their phone during the data-
collection process. Therefore, it may be necessary to align
these coordinate systems using rotation matrices. In order to
avoid this additional step, it is suggested that users pre-align
their phone with the vehicular coordinate system by mount-
ing the phone inside their vehicle, e.g., in a phone/cup
holder. Using the coordinate systems from FIG. 6, the phone
should be located on the center console, with the short edge
parallel to the direction of the vehicle’s motion although
other orientations may work as well.

[0065] FIG. 7 depicts a method for translating messages
which may be implemented in Phase 1 of the CAN message
translator system 40. The goal of this phase is to match the
extracted signals from Phase 0 to openly available OBD-II
PIDs (V), as well as mobile sensor data (P). The latter data
can easily be collected using a smartphone. In an example
embodiment, the OBD-II PIDs (V) and IMU sensors (P)
considered from data collection with Torque Pro—make up
the set S (see FIG. 4). Example signals in set S may include
but are not limited to intake manifold pressure, ambient air
temperature, speed, voltage (control module), turbo boost
and vacuum gauge, fuel rail pressure, engine coolant tem-
perature, torque, accelerator pedal position D, accelerator
pedal position E, engine RPM, intake air temperature,
engine load (absolute), absolute throttle position B, fuel flow
rate, acceleration sensor (X axis), acceleration sensor (y
axis). G(x), G(y), G(z), barometric pressure, altitude, and
bearing. The commonality between these signals (i.e., V, P,
and S) is that they are kinematic or powertrain related, i.e.,
they are captured while the vehicle is in motion. The OBD-II
protocol was standardized for the purpose of capturing and
diagnosing emissions data, which is powertrain-related. The
IMU sensors capture the movement of the smartphone in the
vehicle and therefore the movement of the vehicle, if the
phone is fixed within the vehicle and properly aligned. These
signals are also present on the CAN bus since this data is
generated by and exchanged between ECUs, with a copy
mirrored out to the OBD-II connector.

[0066] During a monitoring period, raw data sent over the
vehicle network is received at 71 by a data analyzer of a
computer. The raw data is first partitioned at 72 into a
plurality of messages. Each message in the plurality of
messages includes a message identifier. The plurality of
messages are then grouped at 73 into multiple message
groups, such that each message group includes messages
with a unique message identifier amongst the plurality of
message groups.

[0067] Concurrently, tagged data sent over the vehicle
network during the monitoring period is also received at 74
by the data analyzer. In the example embodiment, the tagged
data is the OBD-II data. Thus, the tagged data includes an

US 2022/0303305 Al

identifier for a given vehicle parameter and is formatted in
accordance with a standardized protocol, such as OBD-II
protocol. It is noted that the raw data and the tagged data can
be represented as a time series over the monitoring period.

[0068] Next, a similarity measure is determined at 75
between the tagged data and each message group in the
plurality of message groups. As mentioned in relation to Eq.
(2) above, CAN signals usually do not encode an absolute
value, but instead a value with a linear relationship to the
latter. As a result, comparing the temporal sequence of a raw
CAN signal from set R and a signal from set S should yield
a high cross-correlation value. In one embodiment, the
similarity measure is made using cross-correlation. Hence,
for each signal deS, run normalized cross-correlation (xcorr)
with all extracted signals reR, which yields a list of cross-
correlation values. Other types of similarity measures are
also contemplated by this disclosure.

[0069] One or more message groups are identified at 76 as
having a high correlation with the tagged data. In an
example embodiment, the message groups are arranged in
descending order according the similarity measure for the
message group. That is, the message groups are arranged in
a descending order with respect to the cross-correlation
value. Message groups with the highest similarity are then
selected. Since multiple CAN signals r can match a signal d
(e.g., the four wheel speeds match the OBD speed), an
intelligent cut-off point is defined that keeps those relevant
signals d with a high correlation value, but deletes those
starting with a correlation score that deviates significantly
from the last signal d. For this purpose, define a threshold
Tpl. In one example, Algorithm 2 below describes how to
set the cut-off point.

Algorithm 2 - Defining the Cut-Off Point

function Top_X(corr_result Tp,)
running_sum, running_avg, cutoff < corr_result [0]
count « 1
for val e corr_result[1 :] do
if val < (1 = T,) - running_avg then
break
cuto f f - append(val)
running_sum ¢ summing_sum + val
count < + 1

Sep. 22, 2022

-continued

Algorithm 2 - Defining the Cut-Off Point

. running_sum
running_avg « ———
count

return cut o f f

In other words, the cutoff occurs where a difference between
similarity measures for adjacent message groups exceeds a
threshold. It is important to re-sample the two input sets R
and S before running the cross-correlation so that both
signals are temporally aligned.

[0070] Some of these signals are highly correlated with
each other so that they can be matched to the same CAN
signal extracted in Phase 0. For instance, engine load is a
scaled version of the engine output torque. As a result, while
generating a ground truth for each vehicle, one needs to
consider these physical relationships and confirm that they
indeed hold during the evaluation of Phase 1. The reason
behind this lies in the xcorr function that was used in the
aforementioned phase. It cannot distinguish between differ-
ent physical signals as long as their temporal sequences are
similar. See Appendix A for a complete summary of rela-
tionships between certain elements in set S.

[0071] Lastly, a data format for a given vehicle parameter
is determined at 77, where the vehicle parameter is identified
by the correlated tagged data. Apart from finding the correct
CAN signal positions, the goal of Phase 1 is to output the
scale (ms) and offset (ts) of each sensor (s). In an example
embodiment, linear regression on the matched CAN signals
R and signals from S is used to obtain these values. The
latter can also be validated against the ground truth DBC
file. To a greater extent, there is interest in comparing the
matched signal positions from before against the ground
truth in order to determine the accuracy of the algorithm in
Phase 1. For this classification task, a confusion matrix is
defined as shown in Table 1 below.

TABLE 1
Confusion Matrix for Phases 1 and 2
Ground Truth
Positive Negative
Results from Positive TP FpP

Phases 1 & 2

Negative FN

Phase 1: Signals that are not identified, but
are part of ground truth

Phase 2: CAN IDs that were incorrectly
rejected during the filtering process

Phase 1: Signals that are correctly identified Phase 1: Signals that are
as part of the ground truth

Phase 2: Candidate CAN IDs that were
correctly identified as being related to an
event

incorrectly identified and are not
part of the ground truth

Phase 2: Candidate CAN IDs
that were incorrectly identified as
being related to an event

TN

Phase 1: Signals that are not
identified, but are also not part of
ground truth

Phase 2: CAN IDs that were
correctly identified as not being
related to an event

US 2022/0303305 Al

[0072] Phase 2 is concerned with identifying message
identifiers associated with a particular vehicle function. In an
example embodiment, Phase 2 consists of a three-stage
filtering process performed on snippets of CAN data
recorded while performing body-related events. A listing of
exemplary events R, e E include but are not limited to lock
driver’s side, lock passenger’s side, unlock driver’s side,
unlock passenger’s side, open trunk, close trunk, open
driver’s door, close driver’s door, open passenger’s door,
close passenger’s door, open door left back, close door left
back, open door right back, close door right back, open
driver’s window, close driver’s window, open passenger’s
window, close passenger’s window, open window left back,
close window left back, open window right back, close
window right back, turn on heating, incremental fan speed
increase, increase temperature incrementally 65-75 F,
decrease temperature incrementally 75-65 F, incremental fan
speed increase, air circulation button on, air circulation
button off, honking horn, headlights off-on, headlights on-
off, hazard lights on, hazard lights off, windshield wipers
once, windshield wipers speed 1, windshield wipers speed 2,
windshield wipers speed 3, interior lights all on, interior
lights all off, windshield wiper fluid, left turn signal on, left
turn signal off, right turn signal on, right turn signal off,
activate parking break, release parking break, open hood,
close hood, driver’s side mirror left right up down, passen-
ger’s side mirror left right up down, buckle driver, unbuckle
driver.

[0073] FIG. 8 provides an overview of this filtering pro-
cess. Reference data sent over the vehicle network is cap-
tured at 81. In the example embodiment, a reference snippet
R, was recorded while the vehicle’s engine/ignition was off,
but with accessory power on. No vehicle functions are
performed in the vehicle while the reference data is
recorded. A reference state, used later in the filtering process,
was generated using this snippet. How to generate the
reference state from R, is further described blow.

[0074] In Eq. (3), count the number of bit-flips (BFC)) in
consecutive messages m,, ; €id,, for that particular CAN ID

72,17

(id,) in each of its 64 bit-positions je[0, 63]:

lidgl—1 (3)
BFG,j= > 1,V je[0,63] and if my; #myi 1.
i=0

Then, define the bit-flip array (BFA,,) for a particular CAN
1D (id,) in each of its bit positions:

BFC,; Q)

B = g

Finally, define the bit-flip rate (BFR,)) of a CAN ID (id,)) as:

63 BFA, ; (5)

BFR, =
64

Note that the above bit-flip rate BFR,, is different from the
one defined in Phase 0. The reference state contains a
mapping of CAN IDs id,, to message payloads that have a

Sep. 22, 2022

bit-flip rate lower than, or equal to a threshold T, , (BFR,,
T,,,), since messages that change less frequently are more
likely to be constant or alternating between a few constant
states. Messages that change more frequently, as evidenced
by BFR,>T,, ;. are less likely to be associated with a single
body-related event, especially because the reference snippet
R, was recorded without any human interaction in the
vehicle that could have triggered body events.

[0075] Additionally, event data sent over the vehicle net-
work while a particular vehicle function is performed in the
vehicle is captured at 83. Event data is also recorded while
the vehicle engine is off.

[0076] FIG. 9 illustrates an example of the filtering pro-
cess in Phase 2. The event snippet is shown in the TRACE
section and the generated reference state is shown in the
REFERENCE section. After generating the reference state,
each event snippet R, was filtered through three separate
stages, each designed to independently identify potential
candidate CAN IDs. The order of these filtering stages was
set based upon extensive evaluation to achieve the highest
accuracy. Stages 1, 2, and 3 operate under the assumption
that body-related events should trigger visible and immedi-
ate changes in the messages broadcast on the CAN bus.
[0077] With continued reference to FIGS. 8 and 9, stage 1
filters messages with constant payloads. Assume that body-
related events should trigger changes in message payloads
for at least one CAN ID, so all CAN IDs whose payloads did
not change throughout the snippet are removed as indicated
at 85. As an example, in FIG. 9, messages with a CAN ID
of 300 were filtered out at this stage because all payloads
sent in the event snippet were the same.

[0078] Stage 2 filters messages present in the reference
state as indicated at 86. That is, candidate messages are
removed if their CAN IDs and payloads matched a (CAN
1D, payload) pair found in the reference state. If a candi-
date’s payload from the event snippet was identical to the
reference state, when no body-related events occurred, it is
highly unlikely this message was sent due to a change in the
state of the vehicle’s body. This stage can be considered a
diff between the reference state and each event R,. In FIG.
9, messages with the (CAN ID, payload) pairs (400,
056089000A00A000) and (600, 000000024CB016EA)
were filtered out because they were present in the reference
state. Furthermore, better results were obtained by rejecting
candidates whose CAN IDs were not present in the reference
state.

[0079] Stage 3 filters messages which were likely pow-
ertrain-related as indicated as 87. To reduce the quantity of
remaining candidates, those CAN IDs that were identified as
potential candidates for powertrain-related events in Phase 1
were also removed. This was possible since there was little
overlap between the events being identified in both phases.
To minimize the removal of candidates that were mistakenly
classified as powertrain-related in Phase 1, removed CAN
IDs were removed only if their correlation scores from
Phase 1 were higher than a threshold (T, ;). The correlation
scores for each CAN ID in the example in FIG. 9 can be
observed in the section POWERTRAIN. In such a situation,
messages were filtered out at this stage if their correlation
scores were greater than 0.80.

[0080] Finally, those messages that were not filtered out
are considered the candidates for that particular event snip-
pet and linked to the associated event (i.e., vehicle function)
as indicated at 88. In FIG. 9, the (CAN ID, payload) pairs

US 2022/0303305 Al

that were not filtered out are labeled CANDIDATE in the
TRACE section. Eventually, the results obtained from the
intelligent filtering algorithm were compared against the
ground truth. As in Phase 1, a ground truth needs to be
created from manual inspection of the DBC files for each
test vehicle—a confusion matrix is defined for this classi-
fication task in Table 1.

[0081] Four vehicles are used for an evaluation, all from
the same OEM: Vehicle A is a 2017 luxury mid-size sedan,
Vehicle B is a 2018 compact crossover SUV, Vehicle C is a
full-size crossover SUV while Vehicle D is a full-size pickup
truck. DBC files were acquired for all four vehicles and used
as the ground truths against which to compare the results of
LibreCAN. Vehicles A, C and D have at least two HS-CAN
buses, both of which are routed out to the OBD-II connector,
whereas Vehicle B has at least one HS-CAN and one
MS-CAN, with only the former being accessible via OBD-
II. Two types of data were collected: free driving data for an
hour with each vehicle (for Phase 1) as well as event data for
reverse-engineering body-related events (for Phase 2). For
the former, data was collected through the OBD-II port with
two devices: an ELM327 dongle and an OpenXC dongle. A
Y-cable was used to allow both devices to connect to the port
at the same time, allowing one to gather raw CAN data via
the OpenXC dongle, while simultaneously gathering OBD-
II data and smartphone data via the ELM327 dongle. The
recorded CAN dump consists of raw JSON data with CAN
message metadata such as the CAN ID and timestamp, along
with the payload data. A Torque Pro Android app was used
to interface with the EL.M327 dongle via Bluetooth. This
produced a CSV file with around 22 signals des, containing
both OBD-II PIDs V as well as mobile sensor data P. For
Phase 2, the OpenXC dongle was used to record raw CAN
data.

[0082] Several parameters were introduced above for each
phase x are denoted as T, , where y is an incremental
number. Besides tuning these parameters to achieve the
highest accuracy, another design goal is to find a set of
parameters for each vehicle—henceforth called parameter
configuration—that does not significantly differ from the
configuration of other vehicles. In a real-world use case of
LibreCAN, DBC files are not available, and thus the param-
eters cannot be tuned to achieve optimal performance. Thus,
the existence of a universal configuration is presented that
can achieve good performance on any vehicle without any
prior knowledge of its architecture or DBC structure.
[0083] To evaluate how well our implementation and
enhancements to the READ algorithm’s extracted signal
boundaries, the boundaries produced by Phase 0 are com-
pared with the ground truth boundaries extracted from the
DBC files for both vehicles. To find the optimal values of the
four parameters defined above, a brute-force search was
performed through all possible combinations as depicted in
Table 3. For Phase 0, optimal was defined as the total
number of correctly extracted signals (CE). All parameter
configurations are sorted in a descending list by this metric.
For the maximum number of CE, these configurations
among all four vehicles were inspected for similarity and the
configurations with the smallest distance to each other were
selected. As shown in the first four columns of Table 3, the
numbers of each 4-tuple configuration are very close to each
other.

[0084] The results of the run with the optimal parameters
for Phase 0 are summarized in Table 2. It shows the number

Sep. 22, 2022

of correctly extracted signals (CE) that we optimized our
parameter configurations for, the number of total extracted
signals (TE) and the total number of signals in the DBC files
(TDBC). Note that Vehicle B has a lower number of TDBC
since one can only reverse-engineer one CAN bus (the
second one is not available through the OBD-II port). Define
two ratios: CE/TE and TE/TDBC. The latter can be defined
as reverse-engineering coverage. LibreCAN can always
extract more than half of the available signals, with varying
success for the number of correctly extracted signals. There
are multiple reasons for these less than desirable numbers.

TABLE 2

Phase 0 Elevation Metrics

Correctly Total Total in

Extracted Extracted DBC
Veh. (CE) TE) (TDBC) CE/TE TE/TDBC
Veh A 308 846 1640 36.4% 51.6%
Veh B 96 453 829 21.0% 54.6%
Veh C 208 698 1236 29.8% 56.5%
Veh D 251 828 1327 30.0% 62.4%
[0085] First, not all signals can be triggered in the record-

ings. Although both free driving and event data are used for
signal extraction in Phase 0, it is impossible to capture
everything, e.g., deployed airbags or emergency call signals.
Since all of the evaluation vehicles were newer with several
features and also not the highest trim level for that particular
model, the number of functionalities and thus signals is
relatively higher than an older vehicle. This explains the
TE/TDBC ratio. Second, it is not always possible to match
the exact signal boundaries to the ground truth DBC file. For
instance, the engine speed (RPM) range can go up to 8000
RPM in most vehicles. Under normal driving conditions
with an automatic transmission, the vehicle will shift to the
next gear in the range of 2000-3000 RPM. As a result, one
will miss the most significant bits of that particular signals.
The same applies to another physical signals, such as vehicle
speed or engine coolant temperature. This will intrinsically
result in a low CE/TE ratio.

[0086] As a result, the aforementioned ratio in Table 2
should not be used to draw conclusions about the perfor-
mance of LibreCAN since the signals inspected in Phases 1
and 2 yield high accuracy numbers.

[0087] Next, the accuracy of Phase 1 was analyzed both
independently from Phase 0 (using correct signal boundaries
from the DBC files) in order to avoid possible error propa-
gation, as well as with the extracted signal boundaries from
Phase 0. Using the terminology from the confusion matrix in
Table 1, the following metrics are defined to assess for Phase
1:

TP+ TN
TPTIN ¥ FPA N
TP
TP+ FP
TP
TP+ TN

eAccuracy =
ePrecision =
eRecall =

[0088] In Phase 1, one parameter was introduced that can
be tuned to achieve the best performance. This parameter is

US 2022/0303305 Al

the threshold T, to define the cut-off point, defined previ-
ously. One mechanism to define the optimal value for T, is
via the Receiver Operating Characteristic (ROC) curve.
Since we have an unbalanced ground truth (e.g., the speed
contains more CAN signals r than altitude), a Precision-
Recall (PR) curve is a better option. FIG. 10 shows the PR
curve for both vehicles. Each data point depicts a value of
T,.€[0, 1].

[0089] The closest data point to the upper right corner
delivers the optimal threshold T, for the best performance.
The PR curve depicted in FIG. 10 does not have an ideal
shape for Vehicles A, B and C because the recall value never
exceeds 0.55. According to the above definition of recall,
this means that the True Positives (TP) are always smaller
than the number of False Negatives (FN), i.e., the ground
truth contains CAN signals that can never be found by our
algorithm. Since the ground truth is a subjective interpreta-
tion which is generated by manual inspection of the DBC
files, one can assume that some CAN signals r are unrelated
to the analyzed signal d. This is a limitation of this work
since we could not receive the OEM’s help in interpreting
the DBC files. Some examples where this phenomenon was
encountered are the z-component of accelerometer, altitude
and bearing (all from phone). The former two can be
explained by the fact that all our driving took place in a
relatively flat area without many hills. The latter could be
caused by GPS issues since bearing is collected from the
phone’s GPS module.

[0090] The first part of Table 4 sums up the precision and
recall values using the optimal threshold T, (see Table 3)
obtained from the PR curve analysis. The precision and
recall values reflect the evaluation of Phase 1 with correct
bounds in

TABLE 4

Phases 1 and 2 Evaluation Metrics

Phase 1 Phase 2

Prec. Recall Ace. Prec. Recall

Vehicle A 82.6%/77.2% 44.1%/41.8% 88.0% 8.9% 58.2%
Vehicle B 66.7%/61.1% 26.4%/25.6% 90.1% 8.5% 46.2%
Vehicle C 74.4%/78.1 45.7%/44.9% 91.5% 11.7% 51.6%
Vehicle D 79.7%/70.8% 61.8%/57.3% 95.1% 15.0% 47.2%

the first line and with the signal bounds from Phase 0 in the
second. The latter values are shown to be slightly lower for
all vehicles, with the exception of Vehicle C. High precision
values mean that most of the identified signals are part of the
ground truth, whereas relatively low recall values mean that
we cannot match the majority of signals defined in the
subjective ground truth due to the high number of FNs, as
mentioned previously.

[0091] The anomaly for Vehicle C can be explained as
follows: with more signals available for the run with correct
boundaries, Phase 1 over-identifies signals and causes a
higher number of false positives for that specific vehicle.
This is certainly possible.

Sep. 22, 2022

TABLE 3

Optimal Parameters in LibreCAN

Tp0,0 TpO,l Tp0,2 Tpd3 Tpl Tp2,0 Tp2,3

[0,64] [0,64 [0,1] [0,64] [0,1] [0,1] [21]
Veh. A 0 3 0.02 2 005 003 0.0
Veh. B 2 3 0.01 2 007 003 0.0
Veh. C 0 4 0.01 2 005 003 055
Veh. D 2 3 0.01 2 006 002 0.60
[0092] The goal of Phase 2 was to identify CAN IDs that

were likely associated with a body-related event defined in
Table 10. To evaluate the results of the CAN message
translator, metrics, such as accuracy, precision, and recall,
were used. To evaluate these metrics, one needs to revisit the
terms from the confusion matrix in Table 1. Note that this is
a coarser-grained analysis than Phase 1.

[0093] The three-stage filtering process uses two input
parameters that were defined above: (1) the bit-flip threshold
(T,2,0); used to generate the reference state and (2) the
powertrain minimum correlation score (T, ;), used in the
powertrain filtering stage.

[0094] The collected event traces were run through Phase
2 for each parameter configuration, calculating the accuracy,
precision, and recall metrics for each event. Since the goal
was to facilitate the identification of potential candidate
CAN IDs, those parameters that resulted in a high FP rate
were preferred instead of a high FN rate—to avoid exclud-
ing a potential candidate from consideration. The optimal
parameter values discovered for each vehicle are shown in
the last two columns of Table 3.

[0095] The second part of Table 4 summarizes the mean
values of the metrics for all 53 events while FIG. 11 shows
the median number of CAN IDs remaining after each
filtering stage (per event), as well as the total number of
ground truth CAN IDs lost over all events at each filtering
stage. As predicted, accuracy is high since we filter out most
unrelated CAN IDs for each event, whereas precision is
relatively low. The latter metric indicates the ratio of correct
CAN IDs in the candidate set to the total number of
candidates. However, low precision is not considered to be
an issue. As FIG. 11 shows, one can reduce the number of
CAN IDs after three filtering stages by more than 10x,
despite losing some correct CAN IDs at each stage.

[0096] An important metric for demonstrating the feasi-
bility of LibreCAN is the level of automation available,
compared with the amount of manual effort required on the
part of the user. Although all three phases in the system can
run and generate results without human intervention, there is
still manual effort required to collect input traces. The goal
of LibreCAN is to enable every user to reverse-engineer the
CAN message format of their vehicle with as little effort as
possible. Hence, it is desirable to assess how much data has
to be collected for Phase 1 to yield a reasonable precision
and how long it takes to record all 53 of the events used in
Phase 2.

[0097] The recorded traces of all evaluation vehicles were
around 60 minutes long. The precision reported above
reflects the entire re-sampled trace but how would a shorter
recording affect this metric. Phase 1 was rerun with signals
obtained in Phase 0, with 25%, 50% and 75% of the trace
length. In order to avoid a bias towards more city or highway
driving, the precision was calculated for overlapping seg-
ments of this trace. For instance, to analyze recordings of

US 2022/0303305 Al

only half the length of the original trace, evaluate the
following segments of the trace: (1) the first half of the trace,
(2) the slice of the trace between the first and last quarters
of'its length, and (3) the last half. The mean results of these
evaluations are plotted in FIG. 12.

[0098] A reduction in trace length results in a slight
precision drop for all vehicles except Vehicle B. Vehicle B
exhibits different behavior because a significantly higher
number of signals were extracted with its 100% trace
compared to this trace in the other vehicles we evaluated—
since a greater number of signals were extracted in Phase 0,
a greater number signals were processed in Phase 1. Both the
75% and 100% traces for this vehicle yielded the same
number of correct signals (our design goal in Phase 0), but
the 100% trace resulted in more signals being processed
(due to a higher number of total extracted signals), which
increased the number of false positives and thus decreased
the resulting precision. In order to achieve at least 65%
precision, it is recommended to a trace covering 30 minutes
or more.

[0099] In order to assess the time required to record all 53
events listed in Table 10, a human-study experiment was
conducted, for which an IRB approval (Registration No.
REDACTED) was obtained. For this purpose, an Android
app was developed that ran on top of Carlab. The partici-
pant was required to interact with this app, which loops
through all 53 events, displaying them one at a time on the
screen. A timer begins with the start of recording for the first
event and the participant, seated in the driver’s seat, is
instructed to perform each event and then click the Next
Event button. The timer stops after the last event has been
performed. During the experiment, a member of the study
team sat in the passenger seat and evaluated participant’s
performance of the events, namely if one was performed
incorrectly or skipped.

[0100] A total of ten people participated in this experi-
ment. They were instructed on how to operate the app and
were not allowed to ask questions once the experiment
began. After completing all events, the team member
recorded how long the participants took and asked them how
familiar they were with the test vehicle (Vehicle A) on a
scale from 1 to 5, with 5 being the most familiar. FIG. 13A
summarizes the correlation between the level of experience
with the time span. Note that the completion time was not
affected much by the experience level, except for one totally
inexperienced (1/5) and one very experienced (5/5) partici-
pant. Specifically, for users with experience levels ranging
from 2 to 4, the median of their completion time varies
between 9.0 to 10.4 minutes. FIG. 13B shows the key
behavioral metrics (i.e., number of mistakes and skips) of all
participants. The median numbers of mistakes and skips are
3.5 and 1, respectively. As a result, drivers of different
experience levels are capable of performing all 53 events
with the median rates of error and skip at 6.6% (=3.5/53) and
1.9%, respectively.

[0101] It was concluded that a 30 minute drive for Phase
1 and a 10 minute experiment session inside the vehicle for
Phase 2 are sufficient to produce good results. These num-
bers are feasible for an otherwise completely automated
CAN reverse-engineering framework, especially given the
time that manual reverse-engineering would likely take. The
latter can take from days to weeks, given the detail and
precision of the reverse-engineering needed. Although no

Sep. 22, 2022

explicit times are reported for manual reverse-engineering,
tutorials imply significant effort is required.

[0102] Computation time of all three phases are also
analyzed individually. All experiments were conducted
using Python 3 on a computer running 64-bit Ubuntu 16.04.
This computer featured 128 GB of registered ECC DDR4
RAM and two Intel Xeon E5-2683 V4 CPUs (2.1 GHz with
16 cores/32 threads each). Phase O utilizes all available
computational resources (64 threads), whereas Phase 1 uses
one thread per signal d plus one main thread (23 threads).
Meanwhile, the computationally inexpensive Phase 2 runs in
a single thread.

[0103] Table 5 reports the time required for all computa-
tion steps. Note that these values have been generated for a
run with the optimal parameter configuration. The total
runtimes include operations that finished in less than one
second, which are listed as completing in 0 seconds in Table
5.

[0104] The entire three phase automated process takes 79
seconds for Vehicle A, 74 seconds for Vehicle B, 70 seconds
for Vehicle C and 72 seconds for Vehicle D. All vehicles
have a similar computation time, indicating that LibreCAN
is highly efficient in reverse-engineering a vehicle’s CAN
bus (slightly more than 1 minute) with only a small amount
of manual effort (around 40 minutes).

[0105] As mentioned before, LibreCAN was designed to
achieve a good performance with a universal set of param-
eters in all three phases. In order to show that anyone can
achieve a comparable performance as reported in the pre-
vious subsections without a priori knowledge of the param-
eters, we would like to introduce an accuracy analysis
similar to the above. Since one of the design goals was to
select similar parameters among the four evaluation
vehicles, one can now pick any configuration of these four
vehicles for testing. All four vehicles were evaluated on
parameters T, =2, T, =3, T,,,=0.01, T, 5=2, T, ,=0.
05, T,,,=0.03, and T, ,=0.70. The results are summarized
in Table 6. A comparison with the optimal results for each
vehicle in Table 4 shows that they are relatively similar.
Through the design goals as well as exhaustive evaluation
on four vehicles, a parameter configuration was found that
can produce favorable results for any testing vehicle. This
corroborate the scalability of LibreCAN.

TABLE 5

Summary of Computation time in each phase
and stage (units are in seconds)

Phases Stages Veh A VehB VehC VehD

Phase Parse Raw CAN 11 12 9 9
0 File

Split Trace 2 2 2 2

Remove Unused 0 0 0 0

Columns

Extract Signals 4 9 5 5

Move Small Files 0 0 0 0

Total 17 23 16 16
Phase Run Correlate 40 30 36 40
1 Calculate Scale 17 18 16 13

and Offset

Total 57 48 52 53
Phase Create Ref. State 0 0 0 0
2 Filter Constant 4 2 2 3

Messages

US 2022/0303305 Al

TABLE 5-continued

Summary of Computation time in each phase
and stage (units are in seconds)

Phases Stages Veh A VehB VehC VehD

Compare to Ref. State 0 0 0 0
Filter Powertrain 0 0 0 0
Related Messages

Total 5 3 2 3

LibreCAN Total 79 74 70 72

TABLE 6

Phases 1 and 2 Evaluation Metrics for Generic Parameters

Phase 1 Phase 2
Prec. Recall Ace. Prec. Recall
Vehicle A 77.2% 41.8% 88.0% 8.9% 58.2%
Vehicle B 65.9% 22.5% 90.1% 8.5% 46.2%
Vehicle C 78.1% 44.9% 91.5% 11.7% 51.6%
Vehicle D 72.5% 56.2% 94.6% 13.7% 47.2%

[0106] The main use-case of LibreCAN is as a tool for
security researchers or (white-hat) hackers. It can help them
lower the car-hacking barrier and allow vulnerabilities to be
exploited faster. Another potential use-case envisioned for
LibreCAN is as a utility to enable the development of apps
for vehicles, both in industry and academia.

[0107] Big data generation and sharing will lead to the
monetization of driving data and create an additional source
of revenue for OEMs and services. According to PwC, by
2022 the connected car space could grow to $155.9 billion,
up from an estimated $52.5 billion in 2017. OEM-indepen-
dent, universal access to data by third-party service provid-
ers can make the latter a major player in automotive data
monetization. Third-parties already offer OBD-II dongles
that can access the in-vehicular network and obtain publicly
available data (OBD-II PIDs). In particular, usage-based
insurance (UBI) companies are known to distribute dongles
to track driving behavior, allowing them to adjust insurance
premiums. As mentioned previously, CAN data contains
richer information than OBD-II PIDs and can be leveraged
to build more powerful third-party apps. This also encom-
passes academic research, which usually has limited knowl-
edge about vehicular data collection.

[0108] The techniques described herein may be imple-
mented by one or more computer programs executed by one
or more processors. The computer programs include pro-
cessor-executable instructions that are stored on a non-
transitory tangible computer readable medium. The com-
puter programs may also include stored data. Non-limiting
examples of the non-transitory tangible computer readable
medium are nonvolatile memory, magnetic storage, and
optical storage.

[0109] Some portions of the above description present the
techniques described herein in terms of algorithms and
symbolic representations of operations on information.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. These operations, while described func-

Sep. 22, 2022

tionally or logically, are understood to be implemented by
computer programs. Furthermore, it has also proven conve-
nient at times to refer to these arrangements of operations as
modules or by functional names, without loss of generality.

[0110] Unless specifically stated otherwise as apparent
from the above discussion, it is appreciated that throughout
the description, discussions utilizing terms such as “process-
ing” or “computing” or “calculating” or “determining” or
“displaying” or the like, refer to the action and processes of
a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories
or registers or other such information storage, transmission
or display devices.

[0111] Certain aspects of the described techniques include
process steps and instructions described herein in the form
of'an algorithm. It should be noted that the described process
steps and instructions could be embodied in software, firm-
ware or hardware, and when embodied in software, could be
downloaded to reside on and be operated from different
platforms used by real time network operating systems.

[0112] The present disclosure also relates to an apparatus
for performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general-purpose computer selectively activated
or reconfigured by a computer program stored on a computer
readable medium that can be accessed by the computer. Such
a computer program may be stored in a tangible computer
readable storage medium, such as, but is not limited to, any
type of disk including floppy disks, optical disks, CD-
ROMs, magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROM:s,
EEPROMSs, magnetic or optical cards, application specific
integrated circuits (ASICs), or any type of media suitable for
storing electronic instructions, and each coupled to a com-
puter system bus. Furthermore, the computers referred to in
the specification may include a single processor or may be
architectures employing multiple processor designs for
increased computing capability.

[0113] The algorithms and operations presented herein are
not inherently related to any particular computer or other
apparatus. Various general-purpose systems may also be
used with programs in accordance with the teachings herein,
or it may prove convenient to construct more specialized
apparatuses to perform the required method steps. The
required structure for a variety of these systems will be
apparent to those of skill in the art, along with equivalent
variations. In addition, the present disclosure is not
described with reference to any particular programming
language. It is appreciated that a variety of programming
languages may be used to implement the teachings of the
present disclosure as described herein.

[0114] The foregoing description of the embodiments has
been provided for purposes of illustration and description. It
is not intended to be exhaustive or to limit the disclosure.
Individual elements or features of a particular embodiment
are generally not limited to that particular embodiment, but,
where applicable, are interchangeable and can be used in a
selected embodiment, even if not specifically shown or
described. The same may also be varied in many ways. Such
variations are not to be regarded as a departure from the
disclosure, and all such modifications are intended to be
included within the scope of the disclosure.

US 2022/0303305 Al

What is claimed is:

1. A computer-implemented method for translating mes-
sages sent over a vehicle network, comprising:

receiving, by a computer processor, raw data sent over the

vehicle network during a monitoring period;
partitioning, by the computer processor, the raw data into
a plurality of messages, where each message in the
plurality of messages includes a message identifier;
grouping, by the computer processor, the plurality of
messages into multiple message groups, where each
message group includes messages with a unique mes-
sage identifier amongst the plurality of message groups;
receiving, by the computer processor, tagged data sent
over the vehicle network during the monitoring period,
where the tagged data includes an identifier for a given
vehicle parameter and is formatted in accordance with
a standardized protocol;
determining, by the computer processor, a similarity mea-
sure between the tagged data and each message group
in the plurality of message groups;
identifying, by the computer processor, one or more
message groups in the plurality of message groups
having a high correlation with the tagged data; and
determining, by the computer processor, a data format for
the given vehicle parameter in the plurality of messages
from the one or more identified message groups.

2. The method of claim 1 wherein the tagged data and the
raw data for each of the plurality of messages is represented
as a time series over the monitoring period.

3. The method of claim 1 further comprises determining
a similarity measure between the tagged data and each
message group in the plurality of message groups using
cross-correlation.

4. The method of claim 1 further comprises temporally
aligning the tagged data with the plurality of message groups
prior to the step of determining a similarity measure.

5. The method of claim 1 wherein identifying one or more
message groups further comprises arranging the message
groups in the plurality of message groups in a descending
order according the similarity measures for the message
groups; and selecting the one or more message groups with
the highest similarity measures, such that a cutoff for the one
or more message groups occurs where a difference between
similarity measures for adjacent message groups exceeds a
threshold.

6. The method of claim 1 further comprises determining
a data format for the given vehicle parameter in the plurality
of messages using linear regression, where the data format
for the given vehicle parameter includes a scale and an
offset.

7. The method of claim 1 further comprises capturing, by
a computer processor, reference data sent over a vehicle
network of a vehicle while an engine of the vehicle is off and
no vehicle functions are performed in the vehicle;

partitioning, by the computer processor, the reference data

into a plurality of reference messages to form a refer-
ence state, where each message in the plurality of
reference messages includes a message identifier and
payload data;

capturing, by the computer processor, event data sent over

the vehicle network while a particular vehicle function
is performed in the vehicle and an engine of the vehicle
is off;

Sep. 22, 2022

partitioning, by the computer processor, the event data
into a plurality of candidate messages, where each
message in the plurality of candidate messages includes
a message identifier and payload data;

removing, by the computer processor, candidate messages
from the plurality of candidate messages, where the
payload data from the candidate messages removed
from the plurality of candidate messages matches pay-
load data for at least one of the references messages in
the plurality of references messages;

identifying, by the computer processor, additional candi-

date messages in the plurality of candidate messages,
where the message identifier and the payload data is the
same amongst the additional candidate messages;
removing, by the computer processor, additional candi-
date messages from the plurality of candidate mes-
sages; and
associating, by the computer processor, message identifiers
for messages remaining in the plurality of candidate mes-
sage with the particular vehicle function.
8. The method of claim 7 further comprises
receiving, by the computer processor, raw data sent over
the vehicle network during a monitoring period;
partitioning, by the computer processor, the raw data into
a plurality of messages, where each message in the
plurality of messages includes a message identifier;
grouping, by the computer processor, the plurality of
messages into multiple message groups, where each
message group includes messages with a unique mes-
sage identifier amongst the plurality of message groups;
receiving, by the computer processor, tagged data sent
over the vehicle network during the monitoring period,
where the tagged data includes an identifier for a given
vehicle parameter and is formatted in accordance with
a standardized protocol;
determining, by the computer processor, a similarity mea-
sure between the tagged data and each message group
in the plurality of message groups;
identifying, by the computer processor, one or more
message groups in the plurality of message groups
having a high correlation with the tagged data; and

removing, by the computer processor, further candidate
messages from the plurality of candidate messages
prior to the step of associating message identifiers with
the particular vehicle function, where message identi-
fiers for the further candidate messages match at least
one message identifier for messages in the one or more
message groups.

9. The method of claim 7 wherein the particular vehicle
function is selected from a group consisting of lock driver
door, unlock driver door, lock passenger door, unlock pas-
senger door, open driver door window, close driver door
window, open passenger door window, close passenger door
window, right turn signal on, right turn signal off] left turn
signal on, left turn signal off, headlights on, headlights off,
open hood, and open trunk.

10. A computer-implemented method for identifying mes-
sage identifiers associated with a particular vehicle function,
comprising:

capturing, by a computer processor, reference data sent

over a vehicle network of a vehicle while an engine of
the vehicle is off and no vehicle functions are per-
formed in the vehicle;

US 2022/0303305 Al

partitioning, by the computer processor, the reference data
into a plurality of reference messages to form a refer-
ence state, where each message in the plurality of
reference messages includes a message identifier and
payload data;
capturing, by the computer processor, event data sent over
the vehicle network while a particular vehicle function
is performed in the vehicle and an engine of the vehicle
is off;
partitioning, by the computer processor, the event data
into a plurality of candidate messages, where each
message in the plurality of candidate messages includes
a message identifier and payload data;
removing, by the computer processor, candidate messages
from the plurality of candidate messages, where the
payload data from the candidate messages removed
from the plurality of candidate messages matches pay-
load data for at least one of the references messages in
the plurality of references messages;
identifying, by the computer processor, additional candi-
date messages in the plurality of candidate messages,
where the message identifier and the payload data is the
same amongst the additional candidate messages;
removing, by the computer processor, additional candi-
date messages from the plurality of candidate mes-
sages; and
associating, by the computer processor, message identifiers
for messages remaining in the plurality of candidate mes-
sage with the particular vehicle function.
11. The method of claim 10 further comprises receiving,
by the computer processor, raw data sent over the vehicle
network during a monitoring period;

Sep. 22, 2022

partitioning, by the computer processor, the raw data into
a plurality of messages, where each message in the
plurality of messages includes a message identifier;

grouping, by the computer processor, the plurality of
messages into multiple message groups, where each
message group includes messages with a unique mes-
sage identifier amongst the plurality of message groups;

receiving, by the computer processor, tagged data sent
over the vehicle network during the monitoring period,
where the tagged data includes an identifier for a given
vehicle parameter and is formatted in accordance with
a standardized protocol;

determining, by the computer processor, a similarity mea-
sure between the tagged data and each message group
in the plurality of message groups;
identifying, by the computer processor, one or more
message groups in the plurality of message groups
having a high correlation with the tagged data; and

removing, by the computer processor, further candidate
messages from the plurality of candidate messages
prior to the step of associating message identifiers with
the particular vehicle function, where message identi-
fiers for the further candidate messages match at least
one message identifier for messages in the one or more
message groups.

12. The method of claim 10 wherein the particular vehicle
function is selected from a group consisting of lock driver
door, unlock driver door, lock passenger door, unlock pas-
senger door, open driver door window, close driver door
window, open passenger door window, close passenger door
window, right turn signal on, right turn signal off] left turn
signal on, left turn signal off, headlights on, headlights off,
open hood, and open trunk.

#* #* #* #* #*

