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Abstract
Autonomous driving (AD) systems rely heavily on accurate
lane marker detection for safe navigation, particularly dur-
ing nighttime or low-light conditions. While luminescent
lane markers have been introduced to improve visibility and
enhance road safety in these scenarios, they also introduce
potential vulnerabilities. This paper investigates these risks
by introducing novel luminescent adversarial attacks that ex-
ploit the lane detection models used in autonomous vehicles
(AVs). We demonstrate how these attacks, targeting deep
neural network-based perception models, can manipulate the
textural properties of the markers to cause misdetection of
lanes, leading to safety violations. Through comprehensive
experiments in both digital and physical domains, we sys-
tematically expose the vulnerabilities of state-of-the-art lane
detection models to adversarial luminescent markers. In our
digital experiments, we observe complete model failure in the
worst cases and a failure rate of approximately 33% in the best
cases. Physical experiments using a device running Openpilot
further confirm these risks, underscoring a significant safety
threat posed by luminescent adversarial attacks. Our findings
emphasize the need for robust defenses to protect AVs from
such adversarial threats.

1 Introduction

Autonomous vehicles (AVs) rely on sophisticated percep-
tion systems to localize themselves within dynamic maps
and navigate complex environments. Lane markers, typically
made from high-reflective materials such as glass, acrylic
beads, and LEDs [53], provide essential visual cues for guid-
ing AVs along roadways. Typically painted white or yellow,
these markings—including lines, stripes, symbols, or text—
delineate lanes, ensure consistent traffic flow, and create per-
ceptible boundaries crucial for road safety [1, 37]. However,
accurately detecting and interpreting these markers under
diverse conditions, such as low-light or adverse weather, re-
mains a significant challenge for AV systems.

(a) LED-based ELRMs markers [31] (b) PRMs Luminescent markers [31]
Figure 1: Alternative road markers designed to enhance visibility
for nighttime and low-light navigation. (a) ELRMs LED markers
embedded in a pedestrian crosswalk, providing high-intensity illu-
mination to improve pedestrian safety in urban environments. (b)
PRMs Luminescent markers applied to a road, glowing in the dark
without external power sources, offering a passive, energy-efficient
solution for guiding vehicles and cyclists in low-light conditions.

Recent advancements in nighttime navigation have intro-
duced active luminous road marking technologies such as
photoluminescence road markings (PRMs) and electric lu-
minous road markings (ELRMs) (see Fig. 1), designed to
enhance visibility in low-light conditions, including night-
time, fog, and rain [8, 31, 44]. These markers, which glow
in the dark due to their unique light-emitting properties, of-
fer a promising alternative for enhancing road safety [37].
However, while luminous road markings improve visibility,
they also introduce potential vulnerabilities, raising a critical
question:

Can the luminescent properties of these markers be ex-
ploited as an attack vector?

In this paper, we investigate this question by analyzing
the adversarial risks posed by luminous lane markers in AV
perception systems. We analyze and demonstrate how these
markers can deceive state-of-the-art lane detection (LD) mod-
els, leading to safety-critical failures. Our work investigates
the potential for attackers to manipulate these luminescent
markers, exploiting their glowing properties to deceive AV
perception systems, particularly in nighttime and low-light
conditions.

While we reference ELRMs such as LED markers to high-
light the diversity of emerging road marking technologies, our



(a) Non-uniform glow (b) Arbitrary splash patterns (c) Luminescent road symbols
Figure 2: Perception results of TwinLiteNet for LD and drivable space identification, demonstrating erroneous predictions caused by luminescent
markers. (a) Non-uniform glow leads to incorrect segmentation, misclassifying parts of the road as non-drivable. (b) Arbitrary splash patterns
disrupt the model’s ability to accurately delineate the drivable area. (c) Luminescent road symbols, such as "YIELD," are misinterpreted,
causing segmentation errors. These results highlight the model’s limitations in handling luminescent artifacts, impacting perception accuracy.

work focuses explicitly on PRMs due to their practicality and
stealth as an adversarial tool. PRMs are passive materials that
absorb ambient light and re-emit it in low-light conditions,
enabling stable visibility without requiring power sources or
infrastructure changes. In contrast, LED-based ELRMs de-
mand more electric energy, visible electronic components,
and higher installation and maintenance costs, making them
less feasible for covert adversarial use. Moreover, PRMs are
gaining traction as a low-cost, environmentally friendly solu-
tion for enhancing nighttime road safety, especially in rural,
suburban, and poorly electrified areas [31].

Compared to other known attack vectors—such as painted
patterns [6] or road patches [47]—PRMs offer several ad-
vantages from an adversarial perspective. Road patches or
markings can appear visually anomalous to human observers,
typically require unauthorized changes to public roads, and
physical effort to deploy. In contrast, PRMs are passive, self-
illuminating, and already being adopted for their safety bene-
fits—creating a realistic and stealthy adversarial vector.

As AV technology advances toward Level 3+ auton-
omy [46], assessing the impact of luminescent markers on
perception systems becomes increasingly crucial. While fac-
tors such as faded markers, poor lighting, sensor noise, and
complex road designs already challenge LD systems [26, 38],
luminescent markers introduce an exploitable attack vector
in nighttime conditions. AV perception stacks rely on lane
marker detection for safe navigation, making them susceptible
to adversarial manipulations. Malicious actors could exploit
luminescent properties to deceive perception systems, leading
to incorrect lane detection. As shown in Fig. 2, the percep-
tion results of TwinLiteNet [12] for LD and drivable space
show erroneous predictions caused by luminescent markers,
exposing a vulnerability of AV perception systems.

To the best of our knowledge, this is the first study to sys-
tematically investigate and analyze luminescent markers as
an adversarial threat to AV perception systems, revealing an
unexamined security risk. While previous adversarial attacks
primarily target digital inputs or physical objects in structured
ways, our study highlights how luminescent materials exploit

optical phenomena to amplify gradient variations in image
textures, resulting in the misclassification of lane markings
and drivable spaces. This novel attack vector demonstrates
that even seemingly benign infrastructure elements such as
lane markers can be leveraged to disrupt autonomous naviga-
tion, underscoring the need for more robust perception models
against unconventional threats.

Through systematic experiments, we present an adversar-
ial analysis specifically targeting AVs under nighttime and
low-light conditions. Our evaluations utilize state-of-the-art
(SOTA) LD algorithms on public benchmarks [41, 42] and
a real-world AV platform, Openpilot [15], to assess the sus-
ceptibility of these models to luminescent-based adversarial
manipulations. Our findings provide critical insights into the
vulnerabilities of modern AV perception systems and con-
tribute to developing defenses against adversarial manipula-
tions in AD systems.

The key contributions are summarized as follows:

• We conduct the first comprehensive security analysis of
luminescent markers as a novel adversarial threat to AV
perception systems, demonstrating their feasibility as an
attack vector in low-light conditions.

• We provide an in-depth empirical analysis of how the
glowing properties of luminescent markers disrupt AV
perception systems, with quantitative evaluations under
controlled nighttime settings.

• We empirically demonstrate the vulnerability of SOTA
LD models on both public benchmarks and a real-world
AV platform, revealing that luminescent-based adversar-
ial manipulations can significantly compromise percep-
tion reliability.

Our results show that adversarial manipulations of lumines-
cent markers induce erroneous behavior in lane detection and
drivable space predictions, posing significant safety threats to
AV deployments in real-world scenarios.



2 Background

2.1 Perception Models And Their Challenges

Perception models are fundamental to AVs, enabling them
to understand and interpret their surroundings. These mod-
els primarily rely on camera sensors to capture visual data,
which is processed by image-based machine learning (ML)
algorithms, such as CNNs, ResNets, and YOLOs, to detect
and recognize objects. This real-time interpretation is crucial
for safe navigation and decision-making.

Despite advancements in perception systems, deep neural
network (DNN) models remain highly vulnerable to adver-
sarial inputs [49]. Adversarial perturbations are designed to
deceive the perception system while remaining stealthy and
imperceptible to human observers, creating a significant risk
in dynamic settings like AD. Environmental factors such
as fog, rain, or darkness naturally introduce visual perturba-
tions, which adversaries can further exploit to craft targeted
attacks [21, 35, 58].

Adversarial attacks leverage the intricacies of perception
systems. Subtle changes in gradient space [27], natural blur-
ring [21], or high-intensity light sources [56] can cause these
systems to make incorrect predictions. Though imperceptible
to human drivers, such perturbations may induce malfunc-
tions, leading the vehicle’s perception to misinterpret lane
markings, obstacles, or traffic signs, which could result in
hazardous behaviors.

2.2 Lane Detection

LD is a crucial component of AD systems as it provides in-
formation regarding the road layout, ensuring safety during
navigation. The camera sensor mounted on the vehicle cap-
tures images of the road, and these images are analyzed by
perception models to identify lane boundaries through feature
extraction.

Presently, LD systems are not trained to recognize adversar-
ial luminescent markers, leaving them vulnerable to potential
exploitation. For example, if an LD system is overly sensi-
tive to subtle surface changes, an adversary could introduce
markings imperceptible to human driver but interpreted as
valid lane markers by the LD system [28]. Such perturbation
attacks have successfully compromise even end-to-end AD
stacks [52].

Our proposed attack exploits the reliance of LD models
on stark changes in roadways to detect lane markers [38].
Luminescent markers or materials with high retroreflectivity
introduce significant gradient differences, which perception
systems are prone to misinterpret as genuine markers, partic-
ularly under low-light conditions. An adversary could strate-
gically place luminescent markers to obscure legitimate lane
boundaries, feeding false lane information to the vehicle and
prompting dangerous navigation decisions.

2.3 Luminescent Markers

Luminescence, the emission of light from a substance due to
electron transitions within its atomic or molecular structure,
has been recently adopted for nighttime road markers [18].
Traditional lane markings rely on reflectivity, which requires
an external light source (e.g., vehicle headlights) to be visible.
This reliance limits their effectiveness in poorly lit environ-
ments or adverse weather conditions. In contrast, luminescent
markers actively emit light after exposure to natural or arti-
ficial light sources, maintaining visibility in the absence of
external lighting [31]. This self-sustaining illumination makes
luminescent markers especially suitable for highways, rural
roads, or areas with limited lighting, where conventional road
markings often fail to provide sufficient guidance for both
human drivers and AV perception systems.

Active luminous road markers (ALRMs) include both
PRMs and ELRMs variants, each offering different level
of durability, performance, and ease of development [31].
PRMs can be further categorized into fluorescent road mark-
ings (FRMs) and persistent phosphorescent road markings
(PPRMs). Notably, PPRMs, can emit light and remain visi-
ble for extended periods after exposure to light, significantly
enhancing lane visibility in poor lighting and nighttime condi-
tions [8, 31, 44]. Lin et al. [31] provide an in-depth overview
of active luminous road markers, covering synthesis meth-
ods, limitations, and challenges in their development. This
sustained visibility of these markers directly addresses the
limitations of traditional lane markings, which often become
obscured in low-light settings or during rain, fog, and other
adverse weather conditions [59].

However, the luminescent properties of these markers,
while beneficial for visibility, also introduce potential security
vulnerabilities. An adversary could exploit luminescent mark-
ers to manipulate the driving environment and mislead AV per-
ception systems. For instance, by strategically deploying false
or modified markings, attackers could induce lane deviations,
false stops, or other unsafe behaviors, significantly increasing
the risk of collisions or other life-threatening events [28, 47].
The invisibility of luminescent markers during daylight hours
further complicates detection and mitigation efforts, making
them an insidious threat to AV security.

In this work, we systematically examine how the high gradi-
ent contrast from luminescent markers affects AV perception
in nighttime or low-light environments. We hypothesize that
their strong brightness and distinct gradient signatures make
them highly salient to vision-based perception models, much
like they are to human drivers at night. However, unlike hu-
man drivers who rely on contextual understanding and prior
knowledge of road environments, AV systems predominantly
rely on high gradient visual cues from markers such as edges
and contrast. This dependency makes them more suscepti-
ble to adversarial disruptions. In low-light scenarios, where
conventional contextual cues are scarce or harder to verify,



malicious luminescent markers may be misinterpreted as le-
gitimate road signals, leading AVs to make dangerous naviga-
tion decisions that could compromise the safety of both AVs
and human drivers. Our study builds upon prior research on
physical-world adversarial attacks in AV systems [28, 47], ex-
tending the threat landscape to include luminescent markers, a
passive, low-cost material with persistent nighttime visibility.

2.4 Related Work

A plethora of work has comprehensively analyzed vulnerabil-
ities in AV perception systems, particularly those exploiting
sensory inputs such as LiDAR, radar, and cameras [16, 39].
LiDAR-based attacks manipulate point cloud data through
spoofing or jamming techniques [10,22], while radar systems
have been shown to be susceptible to spoofing signals that
alter object detection outputs [29]. Camera-based attacks, in-
cluding adversarial patches and transparent overlays, have
demonstrated the fragility of visual perception systems under
physical perturbations [11, 33, 36]. Hendrycks et al. [25] fur-
ther highlight how natural adversarial examples such as shad-
ows or reflections degrade model performance, underscoring
the gap in robustness to naturally occurring perturbations.
Adversarial Attacks on Lane Detection. Recent works have
explored adversarial vulnerabilities specific to LD algorithms
by introducing physical or digital perturbations into road en-
vironments. These attacks can be broadly categorized into
physical adversarial attacks and digital/optimization-based
attacks.

Sato et al. [47] demonstrated that strategically placed ad-
versarial patches can mislead LD systems into detecting false
lanes, while Jing et al. [28] optimized the physical placement
of adversarial patches to maximize deception while main-
taining human imperceptibility. Boloor et al. [6] showed that
simple physical alterations, such as painting black lines on the
road, could reliably subvert LD algorithms. These attacks ex-
ploit the model’s reliance on high-gradient lane features, often
without considering broader spatial or contextual information.

Fang et al. [20] proposed the cross-task physical adver-
sarial attack scheme based on LED illumination modulation
(AdvLIM), which leverages fast intensity modulation and the
rolling shutter effect of CMOS sensors to inject imperceptible
brightness perturbations into the captured scene image. Simi-
larly, Fang et al. [19] employed a particle swarm optimization
approach to generate small markings that trick LD algorithms
into mistaking them for valid lanes. Zhang et al. [57] intro-
duced BadLANE, a meta-learning framework that produces
amorphous trigger patterns robust against environmental fac-
tors such as sunlight, shadows, and rain, to implant backdoors
into LD models.

While these works highlight the susceptibility of LD mod-
els to manipulation, they primarily focus on daytime or well-
lit conditions. In contrast, luminescent markers present a novel
adversarial threat by exploiting the dynamic interaction be-

tween low-light environments and high-gradient visual cues.
Luminescent Markers in Nighttime Driving. Active lumi-
nescent lane markers, such as FRMs, PPRMs, and ELRMS,
are widely deployed to improve nighttime driving safety by
enhancing lane visibility and reducing driver strain [59]. Their
effectiveness depends on factors such as synthesis methods,
ambient lighting conditions, and material longevity. Despite
their benefits, luminescent markers introduce novel attack vec-
tors that exploit the high gradient contrast they produce in
low-light environments.

Unlike prior works that focus on adversarial attacks in
daytime conditions, this study pioneers the exploration of
luminescent-based adversarial attacks against LD systems
in nighttime environments. Luminescent markers present a
distinct visual signature that AV systems may misinterpret
due to their reliance on high-gradient features. This work
reveals how these markers can act as natural adversarial per-
turbations, bridging the gap between naturally occurring and
adversarial examples. Our findings highlight the urgent need
for robust perception models capable of defending against
unconventional nighttime threats.

3 Threat Model

This section explores the threats to AVs arising from adver-
sarial manipulations of luminescent markers. We consider
adversaries with varying levels of expertise and resources to
assess impact on vehicle safety and performance.

3.1 Attacker Goals
The adversary executes a physical attack by altering lane
markers with luminescent paint, targeting the LD system of
an AV in a black-box setting. The adversary aims to induce ab-
normal behavior in the AV system under low-light conditions
by manipulating luminescent lane markers to: (1) mislead the
AV’s perception system into detecting deceptive lane mark-
ings, causing unintended lane changes, and (2) misrepresent
drivable spaces by placing adversarial symbols, such as fake
road signs or markers, to trigger sudden braking or erratic
driving maneuvers, thereby increasing accident risk. These
attack scenarios (AS) illustrate how adversaries can exploit
perception systems, disrupting lane marker detection and safe
navigation.

3.1.1 AS1: Strong Light Sources

In this scenario, the attacker employs a high-intensity, non-
visible light source, such as an infrared or ultraviolet laser,
directed at luminescent lane markers. The laser device can be
mounted on nearby infrastructure, such as roadside poles, ad-
vertising billboards, or gantries, and configured to emit beams
intermittently or continuously onto specific lane regions. In-
tense exposure to targeted patches of the lane markers induces



(a) Non-uniform glow (b) Arbitrary splash patterns (c) Luminescent road symbols
Figure 3: Attack scenarios demonstrating how an adversary can manipulate luminescent lane markers to deceive perception systems. (a)
Non-uniform glow introduces irregular illumination along lane markings, potentially confusing LD models. (b) Arbitrary splash patterns create
scattered luminescent artifacts on the road, which may be misclassified as lane markings. (c) Luminescent road symbols, such as "YIELD,"
introduce misleading visual cues that could alter autonomous vehicle behavior.

uneven glow intensities, where some areas become exces-
sively illuminated while others remain dim. This artificially
induced glow imbalance is captured by the vehicle’s cameras,
disrupting the perception model’s LD capabilities. The result-
ing perturbation leads the LD algorithm to misclassify the
lane boundaries and drivable space.

To induce non-uniform glow, the adversary can vary the
laser’s incident light intensity and exposure area by adjusting
the angle, beam spread, and dwell time across specific marker
regions. These adjustments simulate different glow profiles
without requiring precise calibration or gradient-based op-
timization. As depicted in Fig. 3a, this effect can produce
deliberate non-uniform luminescence, resulting in critical
lane-tracking failures and misinterpretation of other essential
visual cues by the perception system.

While we demonstrate how strong light sources can manip-
ulate luminescent markers to create misleading effects, we do
not directly quantify absolute luminescence levels in lux using
a luminometer in this study. Controlling PRM illumination is
challenging due to factors such as temperature, humidity, and
surface conditions [31, 54]. In our setup, luminescent mark-
ers are passively charged by ambient light, and we induce
non-uniformity by selectively obstructing this exposure in
targeted regions. Rather than modeling precise illumination
profiles, our threat model emphasizes their perceptual impact
on LD systems. Future work could systematically establish
brightness thresholds or glow patterns that reliably trigger LD
anomalies. However, our observations indicate that high con-
trast in glow intensity, especially when arranged in specific
geometric patterns, can significantly disrupt AV perception.

3.1.2 AS2: Adversarial Overlays

While AS1 exploits the luminous properties of lane markers,
AS2 explores how adversaries can further manipulate AV
perception through deceptive overlays and projected symbols.
AS2.1: Arbitrary Splash Patterns. In this scenario, the at-
tacker employs adversarial camouflage by using luminescent
paint to create irregular gradient patterns or optical illusions,
as shown in Fig. 3b. These patterns, which resemble random

paint splatters to human observers, are carefully designed to
deceive the LD algorithm. When observed from specific cam-
era angles, these patterns distort the perceived drivable space,
causing the perception system to misclassify it as non-drivable
zones, leading to abrupt stops or unsafe vehicle maneuvers.

We generate arbitrary splash patterns using a simple ran-
domized masking approach (see Section 4). These splatter-
like shapes that mimic ellipses and splines are placed on the
lane markers with randomized spatial distributions, ensuring
diversity while maintaining physical plausibility. The patterns
are generated without relying on gradient-based optimization
or knowledge of specific LD model architectures. This model-
agnostic approach supports black-box threat modeling and
highlights that even naively generated patterns can reliably
induce perception failures across diverse systems, without
requiring sophisticated adversarial techniques.
AS2.2: Projecting Luminescent Road Symbols. In this sce-
nario, the attacker projects misleading symbols or markers
onto the road, as depicted in Fig. 3c, by exploiting the lumi-
nescent properties of the markers at nighttime. The projected
symbols are selected from a combination of standard road
signs (e.g., stop, yield) and abstract geometric patterns (e.g.,
triangles, circles, diagonal bars) known to trigger false pos-
itives in visual perception modules. We evaluate a catalog
of symbols and retain those that consistently interfere with
perception across multiple runs. These projections can trig-
ger unsafe behaviors in the AV, such as sudden braking or
swerving, too rapidly for safe recovery, thereby severely com-
promising vehicle safety.

From a deployment perspective, attackers can exploit low-
traffic periods, especially in rural areas or unlit highways, to
discreetly set up compact projection devices (similar to AS1)
or directly apply luminescent paint. Devices can be motion-
triggered, timer-based, or remotely controlled, with projection
ranges spanning 10–12 feet, matching the standard width of
a U.S. lane. Fluorescent paint allows the markings to remain
inconspicuous during daylight, often appearing transparent or
off-white. The attack’s intermittent and nighttime-only nature
makes it difficult for human drivers or automated inspections
to detect unless under targeted scrutiny.



3.2 Assumptions And Environmental Settings

For our systematic exploration of vulnerabilities of AV percep-
tion models to luminescent markers, we make the following
assumptions:
Assumption 1. The adversary operates in a black-box setting,
leveraging off-the-shelf pre-trained models without knowl-
edge of the AV’s perception stack architecture or exact model
weights. The attacker does not modify or fine-tune these mod-
els but exploits known weaknesses in SOTA framework such
as OpenPilot.
Assumption 2. We exclusively focus on low-light environ-
ments with minimal external light sources, other than vehi-
cle headlights and the luminescent lane markers. This setup
enables the exploration of time-dependent attacks while iso-
lating adversarial effects from other potential confounding
factors, such as streetlights, providing a controlled evaluation
of luminescent-based attacks. We assume the road ahead is
visible due to the luminescent markers and the vehicle head-
lights.
Assumption 3. Geographical factors are considered by fo-
cusing on remote highways at night with minimal illumina-
tion and no traffic. These roads, such as desert highways, ru-
ral interstates, and open-range routes, typically lack artificial
lighting and rely solely on vehicle headlights for visibility.
In these settings, AVs can travel at higher speeds, and hu-
man drivers may be less attentive to lane markers due to the
reduced environmental cues. This scenario presents a real-
istic and high-risk environment for assessing the impact of
luminescent-based attacks on navigation and road safety.

3.3 Attack Relevance

Our study highlights three key factors that emphasize the
relevance of luminescent attacks.
Low-Cost and Widely Available. Luminescent paints and
projectors are inexpensive and easily accessible, making these
attacks feasible for adversaries with varying levels of expertise
and resources.
Effectiveness. The attacks are tested against robust LD mod-
els, demonstrating their potential impact on modern AV sys-
tems. Luminescent-based perturbations exploit inherent weak-
nesses in perception models trained under standard lighting
conditions.
Stealth and Timing. The adversarial modifications remain
inconspicuous during the day, making them difficult to detect.
However, they become highly effective in low-light condi-
tions—precisely when AV systems rely most on lane detec-
tion for safe navigation.

By introducing visual inconsistencies or adversarial over-
lays, an adversary can deceive perception models that are
sensitive to these subtle changes. Implementing proactive
countermeasures is crucial to mitigate these vulnerabilities
and ensure safe operation under adversarial conditions.

4 Experimental Setup

4.1 Luminescent Adversarial Attack

We introduce an optical-based adversarial attack that lever-
ages the luminous property inherent in the material used for
luminescent markers, which help the markers glow at night-
time. The primary goal of the luminescent adversarial attack is
to deceive AD systems through simple overlays and physical
manipulations of the markers.

AD systems rely on memory-intensive high-definition
maps that provide details such as lane-level information, road
geometry, and traffic signs [34]. These systems have com-
munication overhead for periodic updates. However, while
driving in a network-less terrain, AVs often resort to standard-
definition maps [5] for minimal load latency but less detailed.
Despite the available information, detecting adversarially
placed luminescent markers can prove challenging for per-
ception systems. Even SOTA multi-sensor fusion frameworks
designed to account for inconsistencies in data from multiple
sensors, such as cameras, LiDAR, and radar, can struggle, as
these textural changes are only perceivable to camera sensors.

Our evaluation considers both physical and digital domains,
demonstrating the impact across different settings. We con-
duct our experiments in a controlled environment to ensure
safety and systematic evaluation of luminescent markers with-
out external influence. We also validate the efficacy of attacks
vectors on a physical device equipped with Openpilot [15]
for LD, replicating real-world conditions encountered by AVs.
We illustrate our novel attack in digital domain using Math-
Works’ road design software, Roadrunner [45], to simulate
the attack scenarios. By altering the lane marker colors to lu-
minescent hues mimicking genuine luminescent markers, we
replicate a real-world scene at nighttime to evaluate the impact
on LD algorithms. Our proposed attack deliberately misdi-
rects the perception system through adversarial projection
of strong light-source and overlays over legitimate markers
intended to emit absorbed light from daytime exposure to
sunlight.

4.2 LD Algorithms

We evaluate our adversarial attack on three LD algorithms:
TwinLiteNet [12], CLRerNet [30], and YOLOPv2 [23], con-
ducting a comprehensive assessment of their vulnerabilities
under three attack scenarios with varying low-light conditions.
Below is an overview of each algorithm:
TwinLiteNet is a cost-effective encoder-decoder that utilizes
dual attention modules to capture global spatial and channel
dependencies. The model features two decoder blocks that
employ Convtranspose layers for segmenting drivable spaces
and lane lines [12].
CLRerNet enhances LD confidence scores by introducing
LaneIoU. A backbone network such as ResNet integrates



(a) Daytime (b) Nighttime
TwinLiteNet

(c) Daytime (d) Nighttime
CLRerNet

(e) Daytime (f) Nighttime
YOLOPv2

Figure 4: Comparison of LD and drivable space results from Twin-
LiteNet, CLRerNet, and YOLOPv2 on standard road images without
luminescent markers. (a, b) TwinLiteNet predictions for daytime
and nighttime scenes, where lane areas are marked in blue and lane
boundaries in green. (c, d) CLRerNet predictions for daytime and
nighttime scenes, where only lane boundaries are detected, without
explicit drivable space segmentation. (e, f) YOLOPv2 predictions
for daytime and nighttime scenes, where lane areas are highlighted
in green, lane boundaries in red, and detected vehicles are enclosed
in yellow bounding boxes.

LaneIoU into the row-based LD baseline without added test-
time computations, surpassing baseline scores that accurately
represent IoU metric [24, 30].
YOLOPv2 uses a shared encoder with E-LAN architecture
and group convolution for diverse feature learning. The en-
coder extracts features from input images for three task-
specific decoder heads that utilize anchor-based detection
methods [50]. For drivable space (DS) segmentation, the head
connects feature pyramid network (FPN) using early network
features and extra layers for higher resolution [32]. LD fol-
lows the FPN, using deeper features and deconvolution in the
decoder for clearer lane distinction [23].
Algorithm Selection Rationale: These LD models were
selected based on their performance on widely recognized
datasets, such as CULane [40] and BDD100K [55], as demon-

strated in comparative studies [41, 42]. By using publicly
available pre-trained models, we aim to highlight their sus-
ceptibility to adversarial exploitation, underscoring the impor-
tance of responsible deployment in AV systems.

To verify the models’ effectiveness under different lighting
conditions, we test their performance on samples collected
from the NuScenes dataset [9], as shown in Fig. 4. We also
present the predictions of the perception models at night with
standard luminescent marker in Fig. 5. Without luminescent
markers, lane detection suffers from significantly low contrast,
hindering accurate recognition. Our observations include:
(i) two out of three models perform satisfactorily in night-
time conditions with luminescent markers; (ii) TwinLiteNet
demonstrate a notable bias towards white lane markers and
daytime road conditions, failing to detect lanes or drivable
spaces without luminescent markers. This highlights the need
for training LD models with datasets that include luminescent
lane markers.

Our experiments further illustrate how adversaries can ex-
ploit these vulnerabilities using adversarial luminescent mark-
ers. These attacks target the models’ reliance on high-contrast
features, enabling deceptive inputs that compromise lane de-
tection and navigation.

4.3 Digital Domain Setup

We conduct controlled experiments in the digital domain to
evaluate how luminescent adversarial artifacts affect LD mod-
els in scalable, repeatable simulations. These experiments
simulate nighttime road scenarios where environmental fac-
tors and marker appearance can be systematically varied.

The experiments are conducted in RoadRunner, a road de-
sign simulation and visualization software by MathWorks
integrated with MATLAB. Within RoadRunner, we design
custom road environments that include straight road segments
with marked lanes, configuring the materials, colors, and tex-
tures of lane markers to emulate the visual characteristics of
luminescent markers under nighttime conditions. A virtual
AV is placed in the scene, and images are captured from its
forward-facing camera sensor during simulation (see Fig. 6).

To simulate luminescent effects, we modify the material
reflectivity and apply color gradients to lane markers within
RoadRunner, overlaying them with randomized texture masks
to generate glowing artifacts. Specifically, we use the “Oil-
Stains01_Diff" texture mask from RoadRunner’s “Damage
Materials" library to emulate luminescent splash patterns (see
Fig. 7a). This texture was selected from a broad set of avail-
able masks in RoadRunner to ensure generality. All modifica-
tions rely exclusively on native RoadRunner tools and assets,
ensuring that our digital experiments are easily reproducible.
This setup allows us to evaluate the sensitivity of LD models
to glowing splash patterns and textured gradient effects under
low-light conditions.



(a) TwinLiteNet (b) CLRerNet (c) YOLOPv2
Figure 5: Overview of LD model predictions at night under normal luminescent lane markers without any AS. (a) TwinLiteNet detects lane
markings but provides limited segmentation of the drivable space. (b) CLRerNet provides a similar response, capturing lane markers with
minor variations. (c) YOLOPv2 effectively identifies both lane markings (red) and drivable space (green). This comparison highlights the
differences in how each model interprets luminescent lane markings in low-light conditions.

(a) Viewing angle of the camera (b) Frame captured by the camera

Figure 6: Illustration of a camera sensor on an AV capturing im-
ages of the road. (a) The camera’s viewing angle mounted on the
AV, showing its field of vision, which includes luminescent lane
markings and road symbols. (b) The frame captured by the camera,
demonstrating how the projected road symbols appear from the AV’s
perspective.

4.4 Physical Domain Setup

We design an experimental setup to evaluate the effectiveness
of our proposed attack vector in the physical domain. Two
complementary setups are developed: one to assess state-of-
the-art (SOTA) lane detection (LD) algorithms under con-
trolled visual conditions, and another to test a physical device
using OpenPilot for real-time lane and drivable space detec-
tion.

To create a realistic testbed, we construct a miniature road
within our testing facility. The setup includes accurately
painted luminescent lane markers, calibrated lighting con-
ditions, and carefully aligned camera angles that approximate
typical onboard automotive configurations. A smartphone
camera is used to replicate the perspective of a forward-facing
AV perception camera, with field-of-view alignment carefully
tuned to mimic onboard systems. To replicate non-uniform
luminescence for AS1, we adopt a passive approach by selec-
tively obstructing ambient light exposure to sections of the
photoluminescent lane markers, resulting in uneven charging
across their surface. Following prior works on PRMs [31],
we illuminate the scene using a 55W ceiling light produc-
ing approximately 5000 lumens, yielding surface illumination
levels well above the 3 lux threshold for nighttime lane visibil-

(a) Digital splash pattern (b) Physical splash pattern
Figure 7: Illustration of arbitrary splash patterns used in both digital
and physical domains: (a) Digital splash pattern are generated by
modifying available texture masks within RoadRunner library. (b)
Physical splash pattern are created manually by applying random
strokes of luminescent paint.

ity [4]. Although our study uses passive control, a real-world
adversary could deploy an active 365nm UV laser to induce lo-
calized charging patterns, with flux densities exceeding 3 lux,
allowing for precision control of illumination across specific
regions of the road surface.

For AS2.1 (splash patterns), we simulate naturally occur-
ring paint artifacts by spray-painting random strokes with
luminescent paint directly onto the lane surface, forming irreg-
ular splash-like patterns commonly seen at night (see Fig. 7b).
In AS2.2 (projected symbols), we simulate glowing road sym-
bols by placing luminescent-painted shapes, such as arrows
and icons, directly on the driving lane. These patterns ex-
ploit the sensitivity of LD models to high-contrast visual cues
under low-light conditions.

A detailed layout of the physical setup, including the minia-
ture road, camera positioning, and lane markers, is shown in
Fig. 8.

Openpilot: In this setup, we aim to implement the ASs
in a realistic environment and observe the response of the
open-source LD software, OpenPilot [15].

OpenPilot, actively developed by the comma.ai team and
a large open-source community, receives regular feature up-
dates and firmware patches. This ongoing, community-driven
development makes it a practical research platform for testing
real-world autonomous driving scenarios, without the closed-
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(a) Miniature road setup for Openpilot (b) Miniature road with camera setup (c) Overview of the setup in dark
Figure 8: Overview of the two physical experimental setups used for evaluating LD and drivable space identification with a camera sensor and
OpenPilot. (a) Miniature road setup with OpenPilot, where a conveyor-like road surface with lane markings simulates driving conditions. (b)
Miniature road setup with a camera sensor placed in a fixed position to capture lane markings under standard lighting conditions. (c) Overview
of the setup in a dark environment, demonstrating the visibility and perception of luminescent lane markings using a camera sensor. The
darkness eliminates unrealistic factors, highlighting only the luminescent lane markers and ensuring a more reliable evaluation. These setups
provide controlled conditions for testing model responses to various road and lighting scenarios.

source limitations found in commercial products like Tesla’s
Full Self-Driving (FSD) system.

To physically test the attacks, we construct a miniature
road model, as shown in Fig.8a. This model replicates the
dimensions of a real road, with a total length of 50 meters and
lane markings 16 cm wide. The miniature road, measuring 45
cm in width and 165 cm in length [13], accurately scales down
the lane markings of a real-world road. We selected OpenPilot
for evaluation due to its cost-effectiveness, availability, and
popularity as an alternative to premium self-driving systems.
Luminescent lane markings were applied to the miniature
road to simulate driving conditions for testing. The Comma
3X device [14], running OpenPilot v0.9.5, was positioned at
the beginning of the miniature road.

5 Experimental Analysis

To evaluate the impact of the proposed luminescent-based
attack, we employ the attack success rate (ASR) as our pri-
mary metric, as detailed in Table 1. We define an attack as
successful (ASs) if it significantly degrades either of two key
perception outputs:

• Lane Prediction Failure: The LD algorithms fails to
predict one or more valid lane lines present in the ground
truth within the region affected by the adversarial mark-
ers. This is determined by the absence of expected lane
lines or the presence of incorrect or spurious lines that
conflict with known road geometry.

• Drivable Space Accuracy: The predicted drivable area
achieves less than 75% pixel-wise overlap with the
ground truth segmentation, i.e., intersection over union
(IoU) < 0.75.

If either of these conditions is met, we label the attack as
successful. Conversely, an attack is considered failed (AS f ) if

all visible ground truth lane lines are correctly detected and the
drivable space prediction remain above the threshold. When
the LD model supports both outputs, both criteria are applied;
otherwise, we evaluate the available output accordingly. The
ASR is calculated as:

ASR =
ASs

ASs +AS f
(1)

This metric captures the proportion of attack trials that
result in substantial perception failures.

In addition to ASR, we report IoU values for the drivable
space predictions generated by the LD models—TwinLiteNet
and YOLOPv2. We use the VGG image annotator (VIA) [17]
as a segmentation tool for IoU calculation. IoU is defined as
the ratio of the intersection region of the predicted drivable
space Apred by the LD models and ground truth Agt areas to
their union:

IoU =
|Apred ∩Agt |
|Apred ∪Agt |

. (2)

IoU is particularly well-suited for measuring spatial accu-
racy and evaluating how closely the predicted drivable space
aligns with the true region, under both adversarial and stan-
dard conditions.

5.1 Digital Domain

Our experimental analysis considers two environmental set-
tings. In the first setting, images capture background illumina-
tion, simulating scenarios where ambient light is present. The
second setting represents scenarios with minimal to no illumi-
nation from surrounding, akin to driving on a long highway
without streetlights, as illustrated in Fig. 9. Throughout our
empirical investigation, we explore how SOTA LD models
respond to the presence of luminescent markers. Our focus
extends to analyzing inferences for objects located both close



(a) Poor-lighting (b) Complete dark surroundings
Figure 9: Comparison of road visibility with luminescent lane marker
perception under different lighting conditions. (a) Poor lighting,
where ambient light is present but minimal, causing reduced lane
marker contrast with the road surface. (b) Complete darkness, where
only luminescent lane markers are visible, enhancing their contrast
while eliminating external visual distractions.

and far, providing information on the sensitivity of LD mod-
els to these adversarial scenarios. The following provide a
detailed breakdown of our findings categorized by the specific
attack scenarios.

Strong Source Light. The impact of non-uniform lumi-
nescence from strong light sources was evident in the per-
formance of LD models in predicting correct DS. Among
the three models evaluated, TwinLiteNet demonstrated the
least resilience to non-uniform luminescence, resulting in re-
gions with incorrect drivable space predictions. YOLOPv2
performed more reliably than TwinLiteNet but struggled in
predicting correct drivable space under completely dark sur-
roundings. As shown in Table 2, YOLOPv2 achieved an av-
erage IoU score above 99% in poor lighting, which dropped
below 3% in dark environments. CLRerNet proved most ro-
bust against lighting variations, maintaining an ASR of 33.3%
regardless of lighting conditions, as depicted in Table 1. Fur-
thermore, Table 3 summarizes each model’s performance by
showing the number of successful experiments under varying
lighting conditions (poor lighting and complete darkness).
This comparison highlights the vulnerabilities across models,
suggesting that while models like YOLOPv2 may perform
well in well-lit scenarios, their performance degrades signifi-
cantly in more challenging lighting conditions.

Adversarial Overlays. The introduction of adversarial
overlays through projections and splashes significantly im-
pacted LD algorithm confidence in predicting correct lanes
and drivable space across various lighting conditions. As
illustrated in Fig. 10, TwinLiteNet consistently failed to de-
tect drivable space and accurate lanes, while YOLOPv2 and
CLRerNet showed competence in predicting certain scenes.
CLRerNet excelled in LD with high-contrast lane markers in
fully dark settings, though its accuracy declined under poor
lighting. Conversely, YOLOPv2 demonstrated superior per-

Table 1: ASR (in%) on SOTA LD models in digital domain

Attack Scenarios TwinLiteNet CLRerNet YOLOPv2

Strong Light Sources 100.0 33.3 66.6
Arbitrary Splash Patterns 100.0 85.7 57.0
Projected Road Symbols 100.0 66.6 58.3

formance in predicting lanes and drivable space in various
settings. On average, adversarial textures, such as arbitrary
spray patterns, achieved an ASR of 81% across all LD models.
Similarly, projecting luminescent road symbols on the road
resulted in an ASR of 75%.

Our findings underscore a clear trade-off between perfor-
mance and inference speed among the LD models, each ex-
hibiting specific vulnerabilities in different scenarios. We
examined three AS, including multiple test cases for certain
scenarios (e.g., three road symbols), to assess each model’s
response. Models like TwinLiteNet prioritize faster inferences
but exhibit false detections due to luminescent markers. On
the other hand, the YOLOPv2 model, offering superior per-
formance, showed higher inference times. This distinction
illustrates the critical balance between speed and accuracy for
real-world applications, where faster models might fail under
certain conditions, but more robust models could introduce
latency issues. Notably, CLRerNet showcased value in detect-
ing luminescent lane markings in entirely dark surroundings,
although it lacks drivable space prediction. The selection of
CLRerNet was intentional to provide a contrast between LD-
only models and those combining LD with drivable space
segmentation.

5.2 Physical Domain
In our miniature road setup, we tested the effect of lumines-
cent markers in a low-light environment. Consistent with
the findings from the digital domain, none of the SOTA LD
models successfully detected accurate lanes or drivable space
across all attack scenarios. This reinforces the general vulner-
ability of these models to adversarial luminescent markers in
real-world settings.

In the Openpilot setup, we observed similar behavior
against luminescent markers. Fig. 11a shows a luminescent
splash pattern painted on the road, initially detected by the
Comma 3X, which accurately identifies lane markings and po-
sitions the drivable space to cover the splash pattern. However,
as Openpilot approached the pattern, as shown in Fig. 11b, the
drivable space prediction began to adjust, eventually veering
off-road. A similar pattern of performance degradation was
observed when replacing the splash pattern with deceptive
luminescent road symbols painted on the road. We tested
three common symbols, speed-limit 25, yield, and stop. Our

Table 2: Avg. IoU (in %) for DS prediction under different lighting
conditions for LD models. YOLOPv2 performs well in poor light-
ing but struggles in complete darkness, indicating its reliance on
minimal lighting. TwinLiteNet shows better adaptability in darkness
compared to poor lighting. These results highlight the strengths and
limitations of each model under varying illumination levels.

Lighting Conditions TwinLiteNet YOLOPv2

Poor Lighting 15.90 99.32
Complete Dark 30.92 2.57



(a) TwinLiteNet: poor-lighting (b) TwinLiteNet: dark

(c) CLRerNet: poor-lighting (d) CLRerNet: dark

(e) YOLOPv2: poor-lighting (f) YOLOPv2: dark
Figure 10: Perception results of LD and DS under different lighting
conditions. (a, b) TwinLiteNet predictions show inconsistencies,
with misclassified DS in poor lighting and partial LD in darkness. (c,
d) CLRerNet demonstrates more stable LD but struggles with DS
segmentation under varying illumination. (e, f) YOLOPv2 effectively
segments DS but exhibits distortions and misclassifications due to
luminescent markers, especially in dark conditions. These results
highlight the challenges posed by adversarial perturbations across
different lighting environments.

experiments demonstrated that Openpilot consistently failed
to maintain accurate lane and drivable space predictions as it
encountered these symbols, leading to incorrect maneuvers.

In a controlled physical setting, our proposed attack vec-
tor achieved a 100% ASR across all tested LD algorithms.
The results for each LD model, including TwinLiteNet, CLR-
erNet, and YOLOPv2, are depicted in Fig. 12, providing a
comprehensive view of each model’s performance against
luminescent attack scenarios.

6 Discussions and Limitations

Safety Implication: The misclassification of adversarial lu-
minescent markers poses significant safety risks, including
unintended lane changes, misinterpreted road symbols, and
collisions. While large-scale deployment of luminescent mark-
ers is still limited, the hazards they present to AVs are real and
should not be overlooked. Accurate risk assessment requires
diverse testing conditions. Future work can explore controlled
variations in power and illumination of PRMs to enable more
rigorous and repeatable evaluations of adversarial threats.

Table 3: Experimental results of LD models under varying lighting
conditions and AS. TwinLiteNet shows relatively higher success
rates in complete darkness, while YOLOPv2 struggles in dark condi-
tions but performs well under poor lighting. CLRerNet demonstrates
limited success in handling attacks, particularly under poor lighting
conditions. These results highlight the robustness and vulnerabilities
of each model to different types of visual perturbations.

Attack Scenarios Lighting Conditions TwinLiteNet CLRerNet YOLOPv2

Strong Light Sources
Total Experiments 6 6 6

Poor Lighting (success) 3 1 3
Complete Dark (success) 3 1 1

Arbitrary Splash Patterns
Total Experiments 7 7 7

Poor Lighting (success) 3 3 3
Complete Dark (success) 4 3 1

Projected Road Symbols
Total Experiments 12 12 12

Poor Lighting (success) 6 2 6
Complete Dark (success) 6 6 1
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Figure 11: Demonstration of OpenPilot’s response to luminescent
splash patterns, showcasing its adaptive recognition and positioning
of drivable space under different conditions. (a) Detection of DS
and LD when the splash pattern is at a distance, maintaining stable
perception. (b) Response to a nearby splash pattern, where Open-
Pilot adjusts the drivable space estimation while recognizing lane
markings and the splash pattern. These results highlight OpenPilot’s
incapability to dynamically interpret simple road manipulations in-
fluenced by luminescent artifacts.

Real-world testing with AV platforms such as Autoware [3]
and Baidu’s Apollo [2] could offer insights into how LD mod-
els respond to adversarial manipulations in controlled envi-
ronments. Such testing would help assess the extent of these
risks as luminescent technologies are increasingly integrated
into smart infrastructure in the future.
Testing at Scale: Our current evaluations are conducted on
scaled-down, miniature road setups to approximate real-world
nighttime driving conditions. While this allows for controlled
and reproducible testing, it does not fully replicate the com-
plexity of real-world road geometry, reflectance, or dynamic
lighting conditions. Scaling evaluations to physical testbeds
or high-fidelity simulators would help validate our findings
under more realistic conditions.
Illumination Assumptions: Our attack model assumes low
ambient illumination to maximize the visibility of lumines-
cent markers. However, urban environments often feature per-
vasive artificial lighting, including street lamps and signage,
which can attenuate the perceived intensity of luminescent
signals. This high-illumination noise can obscure or dilute



(a) TwinLiteNet: non-uniform glow (b) TwinLiteNet: arbitrary splash patterns (c) TwinLiteNet: luminescent road symbol

(d) YOLOPv2: non-uniform glow (e) YOLOPv2: arbitrary splash patterns (f) YOLOPv2: luminescent road symbol

(g) CLRerNet: non-uniform glow (h) CLRerNet: arbitrary splash patterns (i) CLRerNet: luminescent road symbol
Figure 12: Comparative perception results of LD models in the presence of luminescent markers under different AS. (a–c) TwinLiteNet
predictions for non-uniform glow, arbitrary splash patterns, and luminescent road symbols, where lane markings and symbols are detected with
varying degrees of accuracy. (d–f) YOLOPv2 predictions under the same conditions, showing differences in LD and DS segmentation. (g–i)
CLRerNet results, providing additional insights into its inability to accurately detect lanes based on luminescent markers. This comparison
highlights the robustness and limitations of each model in handling AS with luminescent markers.

adversarial cues, reducing their impact on LD performance.
As such, our threat model targets realistic low-light settings
such as rural or low-traffic highways, where external lighting
is minimal and the markers remain salient.
Attack Implication on End-to-End (E2E) AV System:
Luminescent-based attacks pose a broader risk to E2E AV
pipelines by introducing perception errors that propagate into
downstream control decisions. Perturbations affecting lane
or drivable space predictions may result in unsafe behaviors
such as sudden braking, erratic steering, or failure to main-
tain lane integrity. Since E2E systems lack human oversight
and often tightly couple perception and control, these subtle
visual attacks exploit a critical vulnerability in vision-centric
autonomy.

Possible Defenses: Addressing these challenges requires a
multifaceted defense strategy. One promising avenue is ad-
versarial training, in which LD models are fine-tuned using
manipulated images containing luminescent markers. Given
the reduced visual complexity of nighttime scenes, the re-
quired dataset size for robust generalization may be smaller
than that for daytime training.

Beyond adversarial training, multi-sensory fusion
(MSF) [51] can enhance resilience by combining comple-
mentary sensing modalities such as LiDAR, radar, and
inertial measurements alongside camera input. While
LiDAR provides accurate depth and geometry, its cost and
power demands hinder wide deployment. Radar, in contrast,
performs well under low-light or adverse weather but lacks



the resolution needed for fine-grained perception tasks
like lane detection. Furthermore, recent research [11] has
shown that MSF architectures can themselves be targets
of adversarial exploitation, suggesting that fusion does not
eliminate vulnerability but shifts the attack surface.

Recent advancements in generative AI models, such as
Sora [7] and SDXL [43], offer promising avenues for aug-
menting datasets with synthetic images, which can improve
model performance and resilience. However, this approach
requires human oversight to ensure the accuracy of generated
data, adding a layer of complexity to scaling efforts.

Furthermore, vision-language models tailored for scene
understanding present an alternative approach, enabling a
unified model to infer lane information directly from input
without requiring preprocessing [48]. Pre-processing tech-
niques to reduce the impact of luminescent materials can pro-
vide an efficient, low-overhead defense. When combined with
adversarial training, data augmentation, and advanced scene
understanding, these approaches can strengthen perception
models against evolving threats.

7 Conclusion

This paper systematically investigates the vulnerabilities of
SOTA LD models to adversarial luminescent markers on road
lanes in low-light environments. Through carefully designed
attack scenarios in both physical and digital domains, we
observed instances of complete LD model failure in worst-
case scenarios and up to a 33% failure rate in the best cases.
Our controlled environments provided insights into this novel
attack vector and its influencing factors, such as varying light-
ing conditions. Additionally, software-in-the-loop OpenPilot
experiments revealed that luminescent attacks could lead to
significant safety hazards, including off-road driving and col-
lisions. These findings highlight that luminescent markers
present a substantial threat to the robustness of AD systems.
Future work can expand evaluations to adversarial weather
conditions, such as rain and fog, or explore new attack vec-
tors and defense strategies for nighttime navigation, opening
multiple avenues for enhancing the security of autonomous
driving systems. While the immediate impact may not be
urgent, addressing these vulnerabilities is essential for ensur-
ing the long-term safety and reliability of the transportation
industry.
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