
2025-01-8091	 Published 01 Apr 2025

Abstract

Modern vehicles contain tens of different Electronic 
Control Units (ECUs) from several vendors. These 
small computers are connected through several 

networking busses and protocols, potentially through 
gateways and converters. In addition, vehicle-to-vehicle 
and internet connectivity are now considered require-
ments, adding additional complexity to an already complex 
electronic system.

Due to this complexity and the safety-critical 
nature of vehicles, automotive cyber-security is a diffi-
cult undertaking. One critical aspect of cyber-security 
is the robust software testing for potential bugs and 
vulnerabilities. Fuzz testing is an automated software 
testing method injecting large input sets into a system. 
It is an invaluable technique across many industries and 
has become increasingly popular since its conception. 
Its success relies highly on the “quality” of inputs 
injected.

One shortcoming associated with fuzz testing is the 
expertise required in developing “smart” fuzz testing tools 
(fuzzers). Developing a fuzzer requires expertise on 
various topics, from input types and underlying networks 
to potential system configurations. Moreover, fuzzers are 
generally not transferable between different systems, 
limiting their reuse. This study investigates whether 
Generative AI technologies can meaningfully assist in their 
development by comparing an AI-generated fuzzer 
against a commercial one.

An automotive fuzzer focusing on Unified Diagnostic 
Services (UDS) was developed by exclusively querying an 
AI model. First, the pre-trained AI is taught the underlying 
structure and constraints of UDS and is then used to 
generate semantically valid test cases. The effectiveness of 
test cases for vulnerability and fault detection is evaluated. 
The impact of specific queries and the underlying protocol 
network configurations on the generated test cases is then 
investigated through comparison with a commercial fuzzer.

Introduction

Vehicles are rapidly becoming more connected, and 
their electronics are increasingly complex. While this 
transformation dramatically enhances the user 

experience, it also expands the vehicles’ attack surface. 
Automotive software security is challenging due to the 
inherent time-sensitivity of in-vehicle communication and 
the low computational power of electronic control units 
(ECUs) – individual computing units of a vehicle. Recent 
automotive security regulations have established manda-
tory cybersecurity standards, which makes it vital for 
automotive manufacturers and suppliers to develop 
secure vehicle software [1].

UDS (ISO 14229) [2] is a standardized diagnostic 
protocol. Its functionality goes beyond simple diagnostics; 
it provides authentication and data security mechanisms 
and even allows updating ECU firmware; as a result, it is 
a prime target for cyber attacks.

Fuzz testing is an automated testing methodology 
that generates a sequence of test inputs, either randomly 

or algorithmically, to identify unexpected program 
behavior. It is often used in penetration testing to uncover 
bugs and vulnerabilities but does not replace a full pene-
tration test’s broader scope and objectives. The size of 
the input set is often exponential on input length. Thus, 
the approach to generating the inputs is the main char-
acteristic of a fuzzer because it determines the test’s 
length and effectiveness.

We employ a generative AI (GenAI) to model a UDS 
fuzzer to achieve a higher effectiveness-to-test-time ratio. 
Two broad research questions can be formalized when 
looking into GenAI and a fuzz testing framework:

	 1.	 How can AI be deployed to enhance the feedback 
during a fuzz testing run and adjust to a 
target dynamically?

	 2.	 Can AI be used to model protocol-based fuzz 
testing to require a lower degree of manual input?

Our work focuses on the second question and 
develops a fuzzer tool with the help of AI. We do use AI 
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to generate test cases statically, but we do not utilize a 
feedback loop. Using AI in a feedback loop for runtime 
adjustments is beyond the scope of this paper and is left 
for future work. Specifically, we identify three intellectual 
contributions (ICs):

IC-1: Development of a UDS 
Fuzzer Model
We reveal that a large language model (LLM) can generate 
the code for a fuzzer by utilizing structured prompts, 
including parts from ISO/SAE standards or log traces. 
However, we note that UDS is a relatively simple protocol, 
and whether the same success can be achieved for more 
complex protocols such as TLS or Bluetooth has not been 
investigated.

IC-2: Effectiveness in 
Vulnerability Detection
We demonstrate the effectiveness of fuzz testing, evalu-
ated in the number of vulnerabilities uncovered and the 
total test time, by finding a critical vulnerability in a device 
under test (DUT) in production. We compare the tradi-
tional fuzz testing methodologies against our fuzzer 
generated by an LLM by deploying them onto the 
same program.

IC-3: LLM Created Test Cases
Generating test cases in an efficient and targeted manner 
to quickly uncover vulnerabilities is a key factor in deter-
mining the effectiveness of a fuzzer. Given their capabili-
ties, AI algorithms naturally present a strong option for 
improving fuzzing techniques. This work examines the 
impact of using an LLM to generate test inputs.

Background

In-Vehicle Network Basics
Many low-layer protocols are standardized for in-vehicle 
networks (IVNs), among which Controller Area Network 
(CAN) bus is widely used for safety-critical tasks with 
real-time requirements. CAN is a message-based broad-
cast protocol with an internal priority mechanism. Most 
internal messages are sent over CAN, such as the commu-
nication between the engine and the accelerator pedal. 
While CAN is the primary focus of this paper, other 

networks like Ethernet are also widely used in automotive 
applications.

A CAN frame is depicted in Fig. 1. It consists of 
several fields, notably, an 11-bit identifier, up to 8 bytes 
of data, and a Cyclic Redundancy Check (CRC) for acci-
dental errors. The identifier serves as a “message identi-
fier”, declaring the meaning as well as the priority of 
messages [2].

Although 8 bytes of payload is sufficient for many 
in-vehicle communication purposes, it becomes a signifi-
cant limitation for diagnostics, which includes firmware 
updates of much larger file sizes. This limitation is 
overcome with the ISO-TP protocol (ISO 15765-2) [4], 
which defines the transport layer. A message can 
be divided into several CAN frames through ISO-TP and 
sequentially transmitted.

UDS
UDS, depicted in Fig. 2, defines the application and session 
layers of an IVN. It standardizes diagnostic messages’ 
basic syntax and significance but leaves many implemen-
tation details to the original equipment manufacturer 
(OEM). Its agnosticism of the underlying networks allows 
it to be  implemented on several different lower-layer 
architectures and enables us to focus only on CAN. UDS 
operates on a request/response basis within a client/
server model, and it has several use cases named 
“services”. UDS requests and responses, depicted in Fig. 
3, are very similar in syntax with three notable fields:

•• CAN ID: The identifier of CAN serves a different 
purpose in UDS. Instead of serving as a message 
identifier, it provides a source mechanism by 
assigning a unique ID for ECUs and a range of 
tester IDs.

•• SID (Service ID): A single-byte service identifier.

•• SBF (Sub-Function Byte): Some UDS services have 
an optional sub-function byte to customize the 
service; e.g., Security Service uses the SBF field to 
define the level of security access.

The structure of negative responses is slightly 
different. As illustrated in Fig. 4, two new fields are intro-
duced, and the SBF and Data Parameters fields 
are discarded.

•• Negative Response SID: Indicates that the response 
is negative and is defined by the standard as always 
being 0x7F.

  FIGURE 1    CAN frame breakdown (Source: [3])
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•• Rejected SID: The SID of the corresponding UDS.

•• NRC (Negative Response Code): The reason for 
the rejection.

Fuzz Testing
Fuzz testing involves generating and injecting unexpected 
inputs into a system to test its robustness. It is a very 
effective software testing technique to ensure software 
robustness or uncover unknown vulnerabilities. It is 
deployed either directly onto the source code or can 
be run on a network protocol. The typical flow of a fuzzer 
is as follows:

	 1.	 Send inputs: Input data to the DUT.
	 2.	 Check response: Check the response for 

unexpected behavior.

	 3.	 Instrumentation: Confirm with an 
instrumentation message (usually a ping) that 
DUT still functions.

	 4.	 Repeat: Modify input every cycle and keep going 
until a failure or another end condition.

Fuzz Testing Techniques
Various approaches to fuzz testing exist, classified mainly 
according to the underlying “fuzz engine” – the algorithm 
to generate fuzz inputs.

Random fuzzing, otherwise known as dumb fuzzing, 
sends completely random inputs to the target. The fuzz 
engine has no idea about the structure of the DUT. 
Moreover, the inputs are not tailored to any specific 
application.

Popularized by the open-source tool Peach Fuzzer, 
mutation-based fuzzing starts with a small set of valid 
inputs and mutates them into a more extensive set with 
higher case coverage.

Generational fuzzing exploits the protocol structure 
or the program under test and creates inputs from 
scratch. The complexity of the protocol is highly related 
to the effectiveness of generational approaches since a 
generational fuzz engine can easily follow a complex 
protocol such as a TLS handshake, where other methods 
may struggle. However, it needs to be tailored to the 
protocol or the program. PROTOS [6], Defensics [7], and 
Peach Fuzzer are well-known fuzzers with genera-
tional engines.

One of the challenges with generational fuzzing is 
the substantial time and expertise required to model the 
fuzzer according to the specific protocol it is designed to 
test. The effectiveness of a fuzzer depends heavily on the 
thoroughness of the software developer who developed 

  FIGURE 2    IVN Architectures, 7 Layer OSI Model (Adapted from [5])

  FIGURE 3    UDS request/positive response frame (Adapted 
from [5])

  FIGURE 4    UDS negative response frame (Adapted from [5])
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the model, which must be closely aligned with detailed 
protocol specifications. Especially given that manufac-
turers may implement standards differently, developing 
a black-box fuzzer for a protocol is not always feasible. 
According to program responses, another issue of gener-
ational fuzzing is the lack of dynamic test case 
generation.

Feedback or “on-the-fly” fuzzing is a dynamic 
approach that uses DUT responses as inputs to the fuzz 
engine in an online fashion. Unlike traditional methods, 
which generate all test cases before deployment [8], 
feedback fuzzing creates inputs during testing, making 
the testing more directed while ensuring that previous 
failures are not repeated. As exemplified by American 
Fuzzy Loop (AFL) [9], feedback fuzzing is frequently 
employed in practice; however, it is harder to develop 
compared to traditional methods and is usually deployed 
directly onto source codes instead of protocols as it may 
overlook issues specific to protocol implementation.

Related Work
The importance of automotive security was understood 
in 2015 when an automotive exploit was published in [10], 
where the researchers used a series of exploits that ulti-
mately allowed them to control a vehicle and steer it off 
the road remotely. This incident is widely known as the 
“Jeep Hack”, which required a recall of 1.4M vehicles and 
led to many lawsuits [3]. Given the rapid rise in cyber 
threats for vehicles, [11] underlines the importance of the 
automotive sector’s adoption of rigorous fuzz testing by 
demonstrating how fuzzers could be deployed at the UDS 
layer and criticizes the automotive industry for not having 
adopted fuzz testing methodology.

Presented at DEF CON 2023, [12] is an LLM tool that 
automatically generates fuzz tests for relatively small-
scale Python code. It demonstrates how LLMs can be very 
effective at understanding code and generating test 
cases, which is significant for fuzz testing. Moreover, the 
tool could try to “auto fix” the code after finding issues 
[13]. However, it is a white-box source code fuzzer and is 
not intended to work on protocols.

[14] proposes an LLM-based fuzzer for real-time 
streaming protocol (RTSP), which can use the LLM as a 
state machine and can be “guided” online based on the 
previous responses. The presented benchmark claims 
that the LLM-based fuzzer has uncovered more vulner-
abilities than traditional fuzzers.

Although fuzz testing has been a popular research 
subject, the literature on CAN fuzzing is limited. [15] 
outlines creating a UDS fuzzer that uses the PCAN inter-
face to fuzz ECUs. They demonstrate their fuzzer’s robust-
ness by causing a software crash on the instrument 
cluster, the recovery of which required an external power 
cycle. [16] uses Defensics and Caring Caribou to fuzz 
open-source UDS implementations and underlines the 
necessity for open-source security in the automo-
tive industry.

Methodology

Black-Box vs. Gray-Box vs. White-
Box Fuzzing
Aside from the input generation algorithms, fuzzers are 
also grouped into three categories depending on their 
knowledge of the DUT. The most common is the black-
box methodology, where the fuzzer has no internal knowl-
edge about the DUT. The opposite, where the fuzzer has 
a complete internal understanding of and access to the 
DUT, is the white-box methodology. A white-box fuzzer 
is usually designed according to the source code of the 
DUT and can monitor the DUT with debug access or 
internal log files [17]. Both approaches have certain advan-
tages; the white-box approach is naturally more powerful 
and can discover more vulnerabilities in a shorter time 
frame, while the blackbox approach is transferable 
between different programs, significantly reducing devel-
opment costs.

A middle ground that partially benefits from both 
approaches is the gray-box methodology. A gray-box 
fuzzer has some internal knowledge of the DUT, usually 
in a specification, file format, or architecture description. 
Without a deep understanding of the source code or 
developer access, this approach is significantly more 
transferable than the white-box approach. Although 
limited, the extra knowledge makes it more directed than 
the black-box approach.

Fuzz Testing Architecture
Fuzz testing architecture defines some fundamental prin-
ciples shared between fuzzers.

The fuzzer’s main component is the fuzz engine, 
which serves as a test case generator.

A “seed” is an initial input to the fuzzer. It can be a 
value, a file, a network packet, a command-line argument, 
a set of valid inputs, or any input data the target will accept.

Instrumentation is entering a familiar input, i.e., an 
input with a known output. Doing so introduces a mecha-
nism to confirm the input that causes a system crash if 
one occurs. Without instrumentation, the fuzzer cannot 
distinguish whether the DUT failed to respond due to a 
system crash caused by the current input, or the previous 
input despite a delayed response being triggered. 
Instrumentation can also be used to get additional data 
from the target to see the state of health of the DUT. Fig. 
5 depicts the typical architecture of a fuzz testing tool.

  FIGURE 5    Fuzz Testing Architecture
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Artificial Intelligence
Recent computational technology and the invention of 
new machine learning (ML) models have significantly 
grown the field of AI. A notable example is deep neural 
network (DNNs), which are based on the biological struc-
ture of neurons and consist of multiple “layers” of compo-
nents [18]. Two recent DNN models are generative adver-
sarial network (GAN) and generative pre-training trans-
former (GPT); the latter, also called generative AI, is the 
basis of our work.

The GPT architecture gained significant popularity 
following OpenAI’s release of the ChatGPT in 2020 [19]. 
GPTs can answer questions, generate creative content, 
understand various programming languages and code, 
and even be employed for autonomous driving purposes.

Developing Software with an LLM
GPTs’ proficient understanding of short blocks of code 
and their ability to generate new ones quickly made them 
an excellent tool for software developers [20]. They have 
shown that boilerplate code can easily be generated in 
seconds. Some of the widely accepted “developer 
companions” are OpenAI’s ChatGPT, Microsoft’s Github 
Copilot, and Meta’s recent CodeCompose.

Results

Experimental Setup
The DUT is a Model 2022 engine control module (ECM)1. 
The primary purpose of an ECM is to control the engine’s 
fuel injection and spark timing for optimal propulsion. By 
continuously monitoring and adjusting the engine func-
tions, the ECM ensures efficient combustion, improved 
performance, and reduced emissions. Fig 6 displays a 
photograph of the experimental setup.

Experiments were conducted on a virtual Windows 
11 ARM (4.5 GB registered RAM, 64-bit) running on an M2 
MacBook Pro.

Obtaining Training Data
Defensics was selected as a suitable commercial fuzz 
testing tool for generating baseline results due to its 
ability to test protocols at a black-box level and its support 
for various instrumentation methods.

Defensics was utilized as a benchmarking tool to 
generate a dataset for evaluating fuzz testing results and 
for comparison against the AI-generated fuzzer. The 
AI-generated fuzzer was developed independently and 
does not rely on Defensics for its functionality. Future 
work should explore using alternative or independently 

1 We will disclose the manufacturer or the exact model of the ECM 
after the responsible disclosure process has been completed.

sourced training data to validate the autonomy of 
LLM-generated fuzzers fully.

A simple probing of the DUT revealed that the UDS 
services displayed in Table 1 were available on the ECU.

Unrecoverable failures in which the ECU is no longer 
responsive are possible, which puts the DUT in a “stuck” 
state. Such failures may present significant security and 
safety concerns for vehicles since the network containing 
UDS messages also contains raw, engine-specific CAN 
data critical for vehicle propulsion.2 In our experimental 
setup, we cannot conclusively determine whether the 

2 The risks of such failures are demonstrated by real-world incidents, 
such as the 2022 recall by Cummins Inc., where faulty engine control 
modules (ECMs) caused stalling in over 12,000 engines across various 
product lines, significantly increasing the risk of crashes and impacting 
manufacturers like Kenworth and Peterbilt models of Paccar [21].

  FIGURE 6    Hardware setup for the experiment

TABLE 1  List of UDS services

SID UDS Service
0x11 ECU Reset
0x28 Communication Control
0x3E Tester Present
0x85 Control DTC Setting
0x86 Response On Event
0x87 Link Control
0x22 Read Data By Identifier
0x24 Read Scaling Data By Identifier
0x14 Clear Diagnostic Information
0x2F Input Output Control By 

Identifier
0x31 Routine Control
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ECU in the stuck state was completely disabled or only 
appeared as so due to disconnection from an operational 
network. However, the ECU entered a bus-off state, effec-
tively removing it from the CAN network. The ECU 
required a reboot through an external power cycle to 
recover from this state. We implemented an automated 
recovery mechanism using a smart plug that reset the 
ECU’s power switch after five consecutive failures.

After statically generating 67,294 test cases, they 
were sequentially input to the DUT randomly to increase 
unpredictability, intending to increase code coverage. The 
total tests took 04:08:14 (HH:MM:SS). The outcome of the 
tests is presented in Table 4.

Two of the six uncovered vulnerabilities placed the 
system in the stuck state. A section of the CAN logs 
corresponding to one such failure is presented in Table 
2. The input corresponds to an ECU Reset request with 
a fuzzed SBF input field.

We presume that either the DUT had faulty software 
logic that only evaluated the first few bits of the SBF and 
lacked a robust else path for unexpected inputs, or the 
software (written in C) had encountered memory problems.

We discovered another SBF value that would result 
in the same failure state. The other four failures were also 
ECU reset requests processed by the DUT, which put the 
DUT offline for a relatively long time. Defensics considered 
this expected behavior since the device transmitted a 
positive response and processed the ECU reset.

Modeling a Fuzzer with an LLM
Writing a fuzzer targeting a protocol can be challenging, 
with specifications reaching over a thousand pages. 
Human interpretation of reading a large specification and 
software development is often misinterpreted due to a 
lengthy protocol specification. One way around this issue 
is to combine an NLP with an LLM to process specifica-
tions and generate code accordingly [22]. Creating a 
protocol corpus using an LLM has shown promise when 
[14] demonstrated that an LLM could model protocols 
based on RTSP.

Rather than training a custom LLM, we determined 
that it would be more effective to use OpenAI’s GPT-4 

for this study. We first queried GPT-4 with a request to 
generate Python code based on the UDS specification to 
see whether it could create a fuzzer based on a standard. 
We  discovered that GPT-4 is aware of many public 
protocol standards, meaning it would not need to be given 
the standard explicitly. However, UDS is not a public 
standard; thus, additional resources must be provided on 
the protocol. After several prompts, GPT-4 successfully 
generated a CAN fuzzer with a Python-CAN depen-
dency – an open-source library to provide CAN support 
for Python. Additionally, we supplied GPT-4 with the CAN 
log collected through Defensics.

GPT-4 identified the basic structure of the CAN log, 
including the logged CAN IDs used by UDS, data length 
codes (DLCs), supported UDS messages sent, and the 
message length.

GPT-4 had no significant problems creating boiler-
plate code based on the log and the standard. To enhance 
the fuzzer, we then asked it to add instrumentation (an 
essential functionality of fuzzers, as previously discussed) 
to the boilerplate code so that whether the DUT was still 
responsive after a fuzz message could be determined. 
Instrumentation not being part of the original boilerplate 
underlines that at least some knowledge of the system 
and fuzz testers is helpful in queries for the resulting 
program quality.

One of the challenges observed when using an LLM 
was that the exact wording of prompts dramatically 
impacted how the LLM would respond. To study how 
prompts affect the accuracy of an LLM, “prompt engi-
neering” is an emerging field. It suggests various tech-
niques that can be used to achieve better results from 

TABLE 3  UDS communication logs as training data

CAN ID
Length 
Byte Service ID Data Bytes Label

7E0 3 22 D3CC Pass
7E0 3 22 F213 Pass
7E0 2 27 45 Pass
7E0 2 3E 44 Pass
7E0 2 11 E0 Fail
7E0 3 3E 52C3 Pass

TABLE 2  CAN bus communication log of a failure.

Entry
Timestamp 
(DT) ID DLC Data Bytes

215695 7893163.986 07E0 8 02 10 03 00 00 00 00 00
215696 7893165.992 07E8 8 06 50 03 00 32 01 F4 00
215697 7893186.852 07E0 8 02 11 E0 00 00 00 00 00
215698 7894816.782 07E0 8 02 10 01 00 00 00 00 00
215699 7896332.402 07E0 8 02 10 01 00 00 00 00 00
215700 7899392.766 07E0 8 02 10 01 00 00 00 00 00
215701 7903411.870 07E0 8 02 10 01 00 00 00 00 00
215702 7908430.647 07E0 8 02 10 01 00 00 00 00 00
215703 7908430.935 07E8 8 06 50 01 00 32 01 F4 00

Note: In the table, blue rows indicate healthy communication, gray rows signify instrumentation attempts without response, and the orange row 
denotes the test case causing the failure.
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an LLM. One technique worth mentioning is called “think 
step by step.” As the name implies, the user appends the 
phrase “think step by step” at the end of their prompts. 
[23, 24] report that this technique significantly improves 
the accuracy of LLM responses.

Inputting Data to the LLM
The training data of around 67,200 entries after prepro-
cessing is entered into the LLM through a prompt in a 
“batch prompting” fashion [25], which is the act of feeding 
the data into an LLM in a single prompt instead of a 
sequence of prompts. Next, the LLM is prompted to 
be ready to generate new test cases based on future logs 
that will be fed into it. This is a RAG! (RAG!) approach, 
which combines the strengths of LLMs with a non-para-
metric, external memory component, typically in the form 
of a large corpus or database that the model can query 
to retrieve information. This process enhances the model’s 
ability to generate responses by allowing it to pull in 
relevant information from an external database in real-
time [26].

Deploying the LLM-Generated 
Fuzzer
We deploy our “LLM UDS Fuzzer” into the same setup as 
Defensics. We run the fuzzer for the same number of test 
cases and integrate the same power cycle script.

The LLM UDS Fuzzer reported 46 failures, many of 
which were repetitions of the same issues due to the lack 
of a mechanism to avoid previously identified failures. 
Among these, four were unique failures – the same ones 
uncovered by Defensics. Table 4 compares the results 
against Defensics.

Although the LLM-generated fuzzer did not outper-
form Defensics, we still consider this a successful outcome 
because Defensics is a commercial tool, and the 
LLM-generated fuzzer was created almost entirely by an 
LLM in a relatively short period. We  argue that 
LLM-generated fuzzers can provide a practical alternative 
to commercial tools when the budget for purchasing such 
tools is limited, and the time or expertise needed for 
manually developing a new tool may not be  readily 
available.

Conclusion and Future Work
The primary goal of this paper was to explore whether 
AI models can speed up the development of fuzz testers. 

We demonstrated that using an LLM to generate a func-
tional fuzzer based on a protocol specification is possible. 
We also showed that an LLM can develop a fuzz testing 
corpus and generate new test cases based on past data, 
creating a feedback loop that allowed the LLM to utilize 
RAG!. These results suggest that LLMs can provide 
valuable assistance in fuzz testing.

The study highlighted the potential of LLMs to under-
stand CAN data and create fuzz tests using a feedback 
fuzzing approach, enabling the generation of directed 
tests and achieving higher code coverage. However, 
achieving the same level of thoroughness as a human 
developer remains an open challenge for AI. LLMs are 
known to produce fabricated or inaccurate outputs when 
provided with ambiguous prompts, which poses chal-
lenges in generating test cases that fully align with 
detailed protocol specifications. Future work should inves-
tigate methods to enhance the reliability and thorough-
ness of LLM-generated fuzzers through improved prompt 
engineering, validation mechanisms, and comparisons 
with human-developed tools.

Our primary focus was UDS over CAN, but vehicles 
employ several other protocols. Future efforts will expand 
this work to include LLM-aided fuzz testing for other 
vehicle communication buses. Moreover, exploring alter-
native datasets and testing diverse protocols will be critical 
to further validating the autonomy and effectiveness of 
LLM-generated fuzzers.

Despite numerous limitations, we  successfully 
demonstrated a failure in a production ECM, showcasing 
the potential of LLM-generated fuzzers as complemen-
tary tools in automotive fuzz testing. While ISO/SAE 21434 
lists fuzz testing in their recommended testing techniques 
for the automotive industry, it stops short of making it a 
requirement [27]. We argue for the necessity of industry-
wide regulations to mandate standardized fuzz testing 
to ensure higher safety and security standards.

Discussion

Overview
The necessity of fuzz testing, a critical technique for iden-
tifying vulnerabilities in many fields, was discussed, and 
its seeming lack of adoption in the automotive field was 
underlined. The impact of LLMs on fuzz testing was 
explored, both in test-case generation and fuzzer program 
development. A fuzzer capable of fuzzing real hardware 
was developed entirely through prompts to GPT-4, which 
proved to be able to find a potentially safety-critical 
vulnerability in an ECU from modern vehicles. Although 

TABLE 4  Fuzz test results

Fuzzer Total Tests Passed Tests Failed Tests Unique Failures Runtime Failure Rate
Defensics 67293 67287 6 4 04:18:44 0.0089%
LLM UDS Fuzzer 67293 67247 46 4 10:01:33 0.0684%

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025



	 8 LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

we demonstrate the potential of LLMs to generate fuzzer 
programs, there remains signif icant room for 
improvement.

Limitations
Testing automotive ECUs outside of a vehicle can be chal-
lenging because they require a wiring harness for commu-
nication, making testing multiple ECUs both costly and 
labor-intensive. Therefore, our study focuses on testing 
a single ECU. While testing multiple devices with various 
tools could produce a broader range of data and help 
mitigate issues like overfitting, this was beyond the scope 
of our current work.

Additionally, we  limited our focus to the relatively 
simple UDS protocol, so we refrain from making general-
ized claims about more complex protocols.

Using a variety of LLMs and comparing the resulting 
programs could lead to further conclusions; however, 
we were limited to using only GPT-4. Consequently, our 
findings are limited to demonstrating that LLMs can 
develop fuzzers with relative ease compared to manual 
development without making broader performance 
comparisons.

A notable limitation of this study was the use of 
Defensics-generated data to help provide context to the 
LLM. While the AI-generated fuzzer showed the ability to 
generate test cases autonomously, it is unclear whether 
it could achieve the same performance without using 
commercially generated training data, raising questions 
about the LLM-generated fuzzer’s broader applicability 
in scenarios where such data is unavailable.

Our future work will include the use of other AI 
models, as well as the training of one specific to our use 
case. In addition, we plan to test the autonomy and trans-
ferability of LLM fuzzers through more experiments.
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