
2025-01-8091	 Published 01 Apr 2025

Abstract

Modern vehicles contain tens of different Electronic
Control Units (ECUs) from several vendors. These
small computers are connected through several

networking busses and protocols, potentially through
gateways and converters. In addition, vehicle-to-vehicle
and internet connectivity are now considered require-
ments, adding additional complexity to an already complex
electronic system.

Due to this complexity and the safety-critical
nature of vehicles, automotive cyber-security is a diffi-
cult undertaking. One critical aspect of cyber-security
is the robust software testing for potential bugs and
vulnerabilities. Fuzz testing is an automated software
testing method injecting large input sets into a system.
It is an invaluable technique across many industries and
has become increasingly popular since its conception.
Its success relies highly on the “quality” of inputs
injected.

One shortcoming associated with fuzz testing is the
expertise required in developing “smart” fuzz testing tools
(fuzzers). Developing a fuzzer requires expertise on
various topics, from input types and underlying networks
to potential system configurations. Moreover, fuzzers are
generally not transferable between different systems,
limiting their reuse. This study investigates whether
Generative AI technologies can meaningfully assist in their
development by comparing an AI-generated fuzzer
against a commercial one.

An automotive fuzzer focusing on Unified Diagnostic
Services (UDS) was developed by exclusively querying an
AI model. First, the pre-trained AI is taught the underlying
structure and constraints of UDS and is then used to
generate semantically valid test cases. The effectiveness of
test cases for vulnerability and fault detection is evaluated.
The impact of specific queries and the underlying protocol
network configurations on the generated test cases is then
investigated through comparison with a commercial fuzzer.

Introduction

Vehicles are rapidly becoming more connected, and
their electronics are increasingly complex. While this
transformation dramatically enhances the user

experience, it also expands the vehicles’ attack surface.
Automotive software security is challenging due to the
inherent time-sensitivity of in-vehicle communication and
the low computational power of electronic control units
(ECUs) – individual computing units of a vehicle. Recent
automotive security regulations have established manda-
tory cybersecurity standards, which makes it vital for
automotive manufacturers and suppliers to develop
secure vehicle software [1].

UDS (ISO 14229) [2] is a standardized diagnostic
protocol. Its functionality goes beyond simple diagnostics;
it provides authentication and data security mechanisms
and even allows updating ECU firmware; as a result, it is
a prime target for cyber attacks.

Fuzz testing is an automated testing methodology
that generates a sequence of test inputs, either randomly

or algorithmically, to identify unexpected program
behavior. It is often used in penetration testing to uncover
bugs and vulnerabilities but does not replace a full pene-
tration test’s broader scope and objectives. The size of
the input set is often exponential on input length. Thus,
the approach to generating the inputs is the main char-
acteristic of a fuzzer because it determines the test’s
length and effectiveness.

We employ a generative AI (GenAI) to model a UDS
fuzzer to achieve a higher effectiveness-to-test-time ratio.
Two broad research questions can be formalized when
looking into GenAI and a fuzz testing framework:

	 1.	 How can AI be deployed to enhance the feedback
during a fuzz testing run and adjust to a
target dynamically?

	 2.	 Can AI be used to model protocol-based fuzz
testing to require a lower degree of manual input?

Our work focuses on the second question and
develops a fuzzer tool with the help of AI. We do use AI

Received: 12 Sep 2024	 Revised: 20 Jan 2025		 Accepted: 21 Jan 2025

LLM-Powered Fuzz Testing of Automotive Diagnostic
Protocols
John McShane  Eastern Michigan University

Levent Celik, Iwinosa Aideyan, Richard Brooks, and Mert D. Pesé  Clemson University

Citation: McShane, J., Celik, L., Aideyan, I., Brooks, R. et al., “LLM-Powered Fuzz Testing of Automotive Diagnostic Protocols,”
SAE Technical Paper 2025-01-8091, 2025, doi:10.4271/2025-01-8091.

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 2 LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

to generate test cases statically, but we do not utilize a
feedback loop. Using AI in a feedback loop for runtime
adjustments is beyond the scope of this paper and is left
for future work. Specifically, we identify three intellectual
contributions (ICs):

IC-1: Development of a UDS
Fuzzer Model
We reveal that a large language model (LLM) can generate
the code for a fuzzer by utilizing structured prompts,
including parts from ISO/SAE standards or log traces.
However, we note that UDS is a relatively simple protocol,
and whether the same success can be achieved for more
complex protocols such as TLS or Bluetooth has not been
investigated.

IC-2: Effectiveness in
Vulnerability Detection
We demonstrate the effectiveness of fuzz testing, evalu-
ated in the number of vulnerabilities uncovered and the
total test time, by finding a critical vulnerability in a device
under test (DUT) in production. We compare the tradi-
tional fuzz testing methodologies against our fuzzer
generated by an LLM by deploying them onto the
same program.

IC-3: LLM Created Test Cases
Generating test cases in an efficient and targeted manner
to quickly uncover vulnerabilities is a key factor in deter-
mining the effectiveness of a fuzzer. Given their capabili-
ties, AI algorithms naturally present a strong option for
improving fuzzing techniques. This work examines the
impact of using an LLM to generate test inputs.

Background

In-Vehicle Network Basics
Many low-layer protocols are standardized for in-vehicle
networks (IVNs), among which Controller Area Network
(CAN) bus is widely used for safety-critical tasks with
real-time requirements. CAN is a message-based broad-
cast protocol with an internal priority mechanism. Most
internal messages are sent over CAN, such as the commu-
nication between the engine and the accelerator pedal.
While CAN is the primary focus of this paper, other

networks like Ethernet are also widely used in automotive
applications.

A CAN frame is depicted in Fig. 1. It consists of
several fields, notably, an 11-bit identifier, up to 8 bytes
of data, and a Cyclic Redundancy Check (CRC) for acci-
dental errors. The identifier serves as a “message identi-
fier”, declaring the meaning as well as the priority of
messages [2].

Although 8 bytes of payload is sufficient for many
in-vehicle communication purposes, it becomes a signifi-
cant limitation for diagnostics, which includes firmware
updates of much larger file sizes. This limitation is
overcome with the ISO-TP protocol (ISO 15765-2) [4],
which defines the transport layer. A message can
be divided into several CAN frames through ISO-TP and
sequentially transmitted.

UDS
UDS, depicted in Fig. 2, defines the application and session
layers of an IVN. It standardizes diagnostic messages’
basic syntax and significance but leaves many implemen-
tation details to the original equipment manufacturer
(OEM). Its agnosticism of the underlying networks allows
it to be implemented on several different lower-layer
architectures and enables us to focus only on CAN. UDS
operates on a request/response basis within a client/
server model, and it has several use cases named
“services”. UDS requests and responses, depicted in Fig.
3, are very similar in syntax with three notable fields:

•• CAN ID: The identifier of CAN serves a different
purpose in UDS. Instead of serving as a message
identifier, it provides a source mechanism by
assigning a unique ID for ECUs and a range of
tester IDs.

•• SID (Service ID): A single-byte service identifier.

•• SBF (Sub-Function Byte): Some UDS services have
an optional sub-function byte to customize the
service; e.g., Security Service uses the SBF field to
define the level of security access.

The structure of negative responses is slightly
different. As illustrated in Fig. 4, two new fields are intro-
duced, and the SBF and Data Parameters fields
are discarded.

•• Negative Response SID: Indicates that the response
is negative and is defined by the standard as always
being 0x7F.

  FIGURE 1    CAN frame breakdown (Source: [3])

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 3� LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

•• Rejected SID: The SID of the corresponding UDS.

•• NRC (Negative Response Code): The reason for
the rejection.

Fuzz Testing
Fuzz testing involves generating and injecting unexpected
inputs into a system to test its robustness. It is a very
effective software testing technique to ensure software
robustness or uncover unknown vulnerabilities. It is
deployed either directly onto the source code or can
be run on a network protocol. The typical flow of a fuzzer
is as follows:

	 1.	 Send inputs: Input data to the DUT.
	 2.	 Check response: Check the response for

unexpected behavior.

	 3.	 Instrumentation: Confirm with an
instrumentation message (usually a ping) that
DUT still functions.

	 4.	 Repeat: Modify input every cycle and keep going
until a failure or another end condition.

Fuzz Testing Techniques
Various approaches to fuzz testing exist, classified mainly
according to the underlying “fuzz engine” – the algorithm
to generate fuzz inputs.

Random fuzzing, otherwise known as dumb fuzzing,
sends completely random inputs to the target. The fuzz
engine has no idea about the structure of the DUT.
Moreover, the inputs are not tailored to any specific
application.

Popularized by the open-source tool Peach Fuzzer,
mutation-based fuzzing starts with a small set of valid
inputs and mutates them into a more extensive set with
higher case coverage.

Generational fuzzing exploits the protocol structure
or the program under test and creates inputs from
scratch. The complexity of the protocol is highly related
to the effectiveness of generational approaches since a
generational fuzz engine can easily follow a complex
protocol such as a TLS handshake, where other methods
may struggle. However, it needs to be tailored to the
protocol or the program. PROTOS [6], Defensics [7], and
Peach Fuzzer are well-known fuzzers with genera-
tional engines.

One of the challenges with generational fuzzing is
the substantial time and expertise required to model the
fuzzer according to the specific protocol it is designed to
test. The effectiveness of a fuzzer depends heavily on the
thoroughness of the software developer who developed

  FIGURE 2    IVN Architectures, 7 Layer OSI Model (Adapted from [5])

  FIGURE 3    UDS request/positive response frame (Adapted
from [5])

  FIGURE 4    UDS negative response frame (Adapted from [5])

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 4 LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

the model, which must be closely aligned with detailed
protocol specifications. Especially given that manufac-
turers may implement standards differently, developing
a black-box fuzzer for a protocol is not always feasible.
According to program responses, another issue of gener-
ational fuzzing is the lack of dynamic test case
generation.

Feedback or “on-the-fly” fuzzing is a dynamic
approach that uses DUT responses as inputs to the fuzz
engine in an online fashion. Unlike traditional methods,
which generate all test cases before deployment [8],
feedback fuzzing creates inputs during testing, making
the testing more directed while ensuring that previous
failures are not repeated. As exemplified by American
Fuzzy Loop (AFL) [9], feedback fuzzing is frequently
employed in practice; however, it is harder to develop
compared to traditional methods and is usually deployed
directly onto source codes instead of protocols as it may
overlook issues specific to protocol implementation.

Related Work
The importance of automotive security was understood
in 2015 when an automotive exploit was published in [10],
where the researchers used a series of exploits that ulti-
mately allowed them to control a vehicle and steer it off
the road remotely. This incident is widely known as the
“Jeep Hack”, which required a recall of 1.4M vehicles and
led to many lawsuits [3]. Given the rapid rise in cyber
threats for vehicles, [11] underlines the importance of the
automotive sector’s adoption of rigorous fuzz testing by
demonstrating how fuzzers could be deployed at the UDS
layer and criticizes the automotive industry for not having
adopted fuzz testing methodology.

Presented at DEF CON 2023, [12] is an LLM tool that
automatically generates fuzz tests for relatively small-
scale Python code. It demonstrates how LLMs can be very
effective at understanding code and generating test
cases, which is significant for fuzz testing. Moreover, the
tool could try to “auto fix” the code after finding issues
[13]. However, it is a white-box source code fuzzer and is
not intended to work on protocols.

[14] proposes an LLM-based fuzzer for real-time
streaming protocol (RTSP), which can use the LLM as a
state machine and can be “guided” online based on the
previous responses. The presented benchmark claims
that the LLM-based fuzzer has uncovered more vulner-
abilities than traditional fuzzers.

Although fuzz testing has been a popular research
subject, the literature on CAN fuzzing is limited. [15]
outlines creating a UDS fuzzer that uses the PCAN inter-
face to fuzz ECUs. They demonstrate their fuzzer’s robust-
ness by causing a software crash on the instrument
cluster, the recovery of which required an external power
cycle. [16] uses Defensics and Caring Caribou to fuzz
open-source UDS implementations and underlines the
necessity for open-source security in the automo-
tive industry.

Methodology

Black-Box vs. Gray-Box vs. White-
Box Fuzzing
Aside from the input generation algorithms, fuzzers are
also grouped into three categories depending on their
knowledge of the DUT. The most common is the black-
box methodology, where the fuzzer has no internal knowl-
edge about the DUT. The opposite, where the fuzzer has
a complete internal understanding of and access to the
DUT, is the white-box methodology. A white-box fuzzer
is usually designed according to the source code of the
DUT and can monitor the DUT with debug access or
internal log files [17]. Both approaches have certain advan-
tages; the white-box approach is naturally more powerful
and can discover more vulnerabilities in a shorter time
frame, while the blackbox approach is transferable
between different programs, significantly reducing devel-
opment costs.

A middle ground that partially benefits from both
approaches is the gray-box methodology. A gray-box
fuzzer has some internal knowledge of the DUT, usually
in a specification, file format, or architecture description.
Without a deep understanding of the source code or
developer access, this approach is significantly more
transferable than the white-box approach. Although
limited, the extra knowledge makes it more directed than
the black-box approach.

Fuzz Testing Architecture
Fuzz testing architecture defines some fundamental prin-
ciples shared between fuzzers.

The fuzzer’s main component is the fuzz engine,
which serves as a test case generator.

A “seed” is an initial input to the fuzzer. It can be a
value, a file, a network packet, a command-line argument,
a set of valid inputs, or any input data the target will accept.

Instrumentation is entering a familiar input, i.e., an
input with a known output. Doing so introduces a mecha-
nism to confirm the input that causes a system crash if
one occurs. Without instrumentation, the fuzzer cannot
distinguish whether the DUT failed to respond due to a
system crash caused by the current input, or the previous
input despite a delayed response being triggered.
Instrumentation can also be used to get additional data
from the target to see the state of health of the DUT. Fig.
5 depicts the typical architecture of a fuzz testing tool.

  FIGURE 5    Fuzz Testing Architecture

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 5� LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

Artificial Intelligence
Recent computational technology and the invention of
new machine learning (ML) models have significantly
grown the field of AI. A notable example is deep neural
network (DNNs), which are based on the biological struc-
ture of neurons and consist of multiple “layers” of compo-
nents [18]. Two recent DNN models are generative adver-
sarial network (GAN) and generative pre-training trans-
former (GPT); the latter, also called generative AI, is the
basis of our work.

The GPT architecture gained significant popularity
following OpenAI’s release of the ChatGPT in 2020 [19].
GPTs can answer questions, generate creative content,
understand various programming languages and code,
and even be employed for autonomous driving purposes.

Developing Software with an LLM
GPTs’ proficient understanding of short blocks of code
and their ability to generate new ones quickly made them
an excellent tool for software developers [20]. They have
shown that boilerplate code can easily be generated in
seconds. Some of the widely accepted “developer
companions” are OpenAI’s ChatGPT, Microsoft’s Github
Copilot, and Meta’s recent CodeCompose.

Results

Experimental Setup
The DUT is a Model 2022 engine control module (ECM)1.
The primary purpose of an ECM is to control the engine’s
fuel injection and spark timing for optimal propulsion. By
continuously monitoring and adjusting the engine func-
tions, the ECM ensures efficient combustion, improved
performance, and reduced emissions. Fig 6 displays a
photograph of the experimental setup.

Experiments were conducted on a virtual Windows
11 ARM (4.5 GB registered RAM, 64-bit) running on an M2
MacBook Pro.

Obtaining Training Data
Defensics was selected as a suitable commercial fuzz
testing tool for generating baseline results due to its
ability to test protocols at a black-box level and its support
for various instrumentation methods.

Defensics was utilized as a benchmarking tool to
generate a dataset for evaluating fuzz testing results and
for comparison against the AI-generated fuzzer. The
AI-generated fuzzer was developed independently and
does not rely on Defensics for its functionality. Future
work should explore using alternative or independently

1 We will disclose the manufacturer or the exact model of the ECM
after the responsible disclosure process has been completed.

sourced training data to validate the autonomy of
LLM-generated fuzzers fully.

A simple probing of the DUT revealed that the UDS
services displayed in Table 1 were available on the ECU.

Unrecoverable failures in which the ECU is no longer
responsive are possible, which puts the DUT in a “stuck”
state. Such failures may present significant security and
safety concerns for vehicles since the network containing
UDS messages also contains raw, engine-specific CAN
data critical for vehicle propulsion.2 In our experimental
setup, we cannot conclusively determine whether the

2 The risks of such failures are demonstrated by real-world incidents,
such as the 2022 recall by Cummins Inc., where faulty engine control
modules (ECMs) caused stalling in over 12,000 engines across various
product lines, significantly increasing the risk of crashes and impacting
manufacturers like Kenworth and Peterbilt models of Paccar [21].

  FIGURE 6    Hardware setup for the experiment

TABLE 1  List of UDS services

SID UDS Service
0x11 ECU Reset
0x28 Communication Control
0x3E Tester Present
0x85 Control DTC Setting
0x86 Response On Event
0x87 Link Control
0x22 Read Data By Identifier
0x24 Read Scaling Data By Identifier
0x14 Clear Diagnostic Information
0x2F Input Output Control By

Identifier
0x31 Routine Control

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 6 LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

ECU in the stuck state was completely disabled or only
appeared as so due to disconnection from an operational
network. However, the ECU entered a bus-off state, effec-
tively removing it from the CAN network. The ECU
required a reboot through an external power cycle to
recover from this state. We implemented an automated
recovery mechanism using a smart plug that reset the
ECU’s power switch after five consecutive failures.

After statically generating 67,294 test cases, they
were sequentially input to the DUT randomly to increase
unpredictability, intending to increase code coverage. The
total tests took 04:08:14 (HH:MM:SS). The outcome of the
tests is presented in Table 4.

Two of the six uncovered vulnerabilities placed the
system in the stuck state. A section of the CAN logs
corresponding to one such failure is presented in Table
2. The input corresponds to an ECU Reset request with
a fuzzed SBF input field.

We presume that either the DUT had faulty software
logic that only evaluated the first few bits of the SBF and
lacked a robust else path for unexpected inputs, or the
software (written in C) had encountered memory problems.

We discovered another SBF value that would result
in the same failure state. The other four failures were also
ECU reset requests processed by the DUT, which put the
DUT offline for a relatively long time. Defensics considered
this expected behavior since the device transmitted a
positive response and processed the ECU reset.

Modeling a Fuzzer with an LLM
Writing a fuzzer targeting a protocol can be challenging,
with specifications reaching over a thousand pages.
Human interpretation of reading a large specification and
software development is often misinterpreted due to a
lengthy protocol specification. One way around this issue
is to combine an NLP with an LLM to process specifica-
tions and generate code accordingly [22]. Creating a
protocol corpus using an LLM has shown promise when
[14] demonstrated that an LLM could model protocols
based on RTSP.

Rather than training a custom LLM, we determined
that it would be more effective to use OpenAI’s GPT-4

for this study. We first queried GPT-4 with a request to
generate Python code based on the UDS specification to
see whether it could create a fuzzer based on a standard.
We discovered that GPT-4 is aware of many public
protocol standards, meaning it would not need to be given
the standard explicitly. However, UDS is not a public
standard; thus, additional resources must be provided on
the protocol. After several prompts, GPT-4 successfully
generated a CAN fuzzer with a Python-CAN depen-
dency – an open-source library to provide CAN support
for Python. Additionally, we supplied GPT-4 with the CAN
log collected through Defensics.

GPT-4 identified the basic structure of the CAN log,
including the logged CAN IDs used by UDS, data length
codes (DLCs), supported UDS messages sent, and the
message length.

GPT-4 had no significant problems creating boiler-
plate code based on the log and the standard. To enhance
the fuzzer, we then asked it to add instrumentation (an
essential functionality of fuzzers, as previously discussed)
to the boilerplate code so that whether the DUT was still
responsive after a fuzz message could be determined.
Instrumentation not being part of the original boilerplate
underlines that at least some knowledge of the system
and fuzz testers is helpful in queries for the resulting
program quality.

One of the challenges observed when using an LLM
was that the exact wording of prompts dramatically
impacted how the LLM would respond. To study how
prompts affect the accuracy of an LLM, “prompt engi-
neering” is an emerging field. It suggests various tech-
niques that can be used to achieve better results from

TABLE 3  UDS communication logs as training data

CAN ID
Length
Byte Service ID Data Bytes Label

7E0 3 22 D3CC Pass
7E0 3 22 F213 Pass
7E0 2 27 45 Pass
7E0 2 3E 44 Pass
7E0 2 11 E0 Fail
7E0 3 3E 52C3 Pass

TABLE 2  CAN bus communication log of a failure.

Entry
Timestamp
(DT) ID DLC Data Bytes

215695 7893163.986 07E0 8 02 10 03 00 00 00 00 00
215696 7893165.992 07E8 8 06 50 03 00 32 01 F4 00
215697 7893186.852 07E0 8 02 11 E0 00 00 00 00 00
215698 7894816.782 07E0 8 02 10 01 00 00 00 00 00
215699 7896332.402 07E0 8 02 10 01 00 00 00 00 00
215700 7899392.766 07E0 8 02 10 01 00 00 00 00 00
215701 7903411.870 07E0 8 02 10 01 00 00 00 00 00
215702 7908430.647 07E0 8 02 10 01 00 00 00 00 00
215703 7908430.935 07E8 8 06 50 01 00 32 01 F4 00

Note: In the table, blue rows indicate healthy communication, gray rows signify instrumentation attempts without response, and the orange row
denotes the test case causing the failure.

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 7� LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

an LLM. One technique worth mentioning is called “think
step by step.” As the name implies, the user appends the
phrase “think step by step” at the end of their prompts.
[23, 24] report that this technique significantly improves
the accuracy of LLM responses.

Inputting Data to the LLM
The training data of around 67,200 entries after prepro-
cessing is entered into the LLM through a prompt in a
“batch prompting” fashion [25], which is the act of feeding
the data into an LLM in a single prompt instead of a
sequence of prompts. Next, the LLM is prompted to
be ready to generate new test cases based on future logs
that will be fed into it. This is a RAG! (RAG!) approach,
which combines the strengths of LLMs with a non-para-
metric, external memory component, typically in the form
of a large corpus or database that the model can query
to retrieve information. This process enhances the model’s
ability to generate responses by allowing it to pull in
relevant information from an external database in real-
time [26].

Deploying the LLM-Generated
Fuzzer
We deploy our “LLM UDS Fuzzer” into the same setup as
Defensics. We run the fuzzer for the same number of test
cases and integrate the same power cycle script.

The LLM UDS Fuzzer reported 46 failures, many of
which were repetitions of the same issues due to the lack
of a mechanism to avoid previously identified failures.
Among these, four were unique failures – the same ones
uncovered by Defensics. Table 4 compares the results
against Defensics.

Although the LLM-generated fuzzer did not outper-
form Defensics, we still consider this a successful outcome
because Defensics is a commercial tool, and the
LLM-generated fuzzer was created almost entirely by an
LLM in a relatively short period. We argue that
LLM-generated fuzzers can provide a practical alternative
to commercial tools when the budget for purchasing such
tools is limited, and the time or expertise needed for
manually developing a new tool may not be readily
available.

Conclusion and Future Work
The primary goal of this paper was to explore whether
AI models can speed up the development of fuzz testers.

We demonstrated that using an LLM to generate a func-
tional fuzzer based on a protocol specification is possible.
We also showed that an LLM can develop a fuzz testing
corpus and generate new test cases based on past data,
creating a feedback loop that allowed the LLM to utilize
RAG!. These results suggest that LLMs can provide
valuable assistance in fuzz testing.

The study highlighted the potential of LLMs to under-
stand CAN data and create fuzz tests using a feedback
fuzzing approach, enabling the generation of directed
tests and achieving higher code coverage. However,
achieving the same level of thoroughness as a human
developer remains an open challenge for AI. LLMs are
known to produce fabricated or inaccurate outputs when
provided with ambiguous prompts, which poses chal-
lenges in generating test cases that fully align with
detailed protocol specifications. Future work should inves-
tigate methods to enhance the reliability and thorough-
ness of LLM-generated fuzzers through improved prompt
engineering, validation mechanisms, and comparisons
with human-developed tools.

Our primary focus was UDS over CAN, but vehicles
employ several other protocols. Future efforts will expand
this work to include LLM-aided fuzz testing for other
vehicle communication buses. Moreover, exploring alter-
native datasets and testing diverse protocols will be critical
to further validating the autonomy and effectiveness of
LLM-generated fuzzers.

Despite numerous limitations, we successfully
demonstrated a failure in a production ECM, showcasing
the potential of LLM-generated fuzzers as complemen-
tary tools in automotive fuzz testing. While ISO/SAE 21434
lists fuzz testing in their recommended testing techniques
for the automotive industry, it stops short of making it a
requirement [27]. We argue for the necessity of industry-
wide regulations to mandate standardized fuzz testing
to ensure higher safety and security standards.

Discussion

Overview
The necessity of fuzz testing, a critical technique for iden-
tifying vulnerabilities in many fields, was discussed, and
its seeming lack of adoption in the automotive field was
underlined. The impact of LLMs on fuzz testing was
explored, both in test-case generation and fuzzer program
development. A fuzzer capable of fuzzing real hardware
was developed entirely through prompts to GPT-4, which
proved to be able to find a potentially safety-critical
vulnerability in an ECU from modern vehicles. Although

TABLE 4  Fuzz test results

Fuzzer Total Tests Passed Tests Failed Tests Unique Failures Runtime Failure Rate
Defensics 67293 67287 6 4 04:18:44 0.0089%
LLM UDS Fuzzer 67293 67247 46 4 10:01:33 0.0684%

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

	 8 LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS

we demonstrate the potential of LLMs to generate fuzzer
programs, there remains signif icant room for
improvement.

Limitations
Testing automotive ECUs outside of a vehicle can be chal-
lenging because they require a wiring harness for commu-
nication, making testing multiple ECUs both costly and
labor-intensive. Therefore, our study focuses on testing
a single ECU. While testing multiple devices with various
tools could produce a broader range of data and help
mitigate issues like overfitting, this was beyond the scope
of our current work.

Additionally, we limited our focus to the relatively
simple UDS protocol, so we refrain from making general-
ized claims about more complex protocols.

Using a variety of LLMs and comparing the resulting
programs could lead to further conclusions; however,
we were limited to using only GPT-4. Consequently, our
findings are limited to demonstrating that LLMs can
develop fuzzers with relative ease compared to manual
development without making broader performance
comparisons.

A notable limitation of this study was the use of
Defensics-generated data to help provide context to the
LLM. While the AI-generated fuzzer showed the ability to
generate test cases autonomously, it is unclear whether
it could achieve the same performance without using
commercially generated training data, raising questions
about the LLM-generated fuzzer’s broader applicability
in scenarios where such data is unavailable.

Our future work will include the use of other AI
models, as well as the training of one specific to our use
case. In addition, we plan to test the autonomy and trans-
ferability of LLM fuzzers through more experiments.

References
	 1.	 Luo F., Zhang X., Yang Z., et al., “Cybersecurity Testing

for Automotive Domain: A Survey,” Sensors (Basel,
Switzerland), vol. 22, no. 23, p. 9211, Nov. 2022, doi:
10.3390/s22239211. [Online]. https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC9736493/ (visited on 11/19/2023).

	 2.	 Road vehicles — Unified diagnostic services (UDS) — Part
1: Application layer (Geneva, CH, Standard: International
Organization for Standardization, Feb, 2020)

	 3.	 Pesé, M.D., “Bringing practical security to vehicles,” PhD
dissertation, The University of Michigan, 2022.

	4.	 Road vehicles - diagnostic communication over controller
area network (docan) - part 2: Transport protocol and
network layer services (Geneva, CH, Standard:
International Organization for Standardization, Apr 2016)

	 5.	 Falch, M., Uds explained - a simple intro, 2022, accessed:
October 9, 2023, CSS Electronics, https://www.
csselectronics.com/pages/uds-protocol-tutorial-unified-
diagnostic-services.

	6.	 Kaksonen, R., “A Functional Method for Assessing
Protocol Implementation Security,” PhD dissertation,
Jan. 2001.

	 7.	 Defensics, https://www.synopsys.com/software-
integrity/security-testing/fuzz-testing.html, accessed:
2023-10-26, Synopsys Inc., 2023.

	8.	 Fioraldi, A., D’Elia, D.C., and Balzarotti, D., “The use of
likely invariants as feedback for fuzzers,” in 30th USENIX
Security Symposium (USENIX Security 21), USENIX
Association, Aug. 2021, 2829-2846, isbn: 978-1-939133-
24-3. [Online]. https://www.usenix.org/conference/
usenixsecurity21/presentation/fioraldi.

	9.	 Zalewski, M., American fuzzy loop, 2013, accessed: 2023-
10-11, https://github.com/google/AFL.

	10.	 Miller, D.C. and Valasek, C., “Remote Exploitation of an
Unaltered Passenger Vehicle,” en, Aug. 10, 2015.

	11.	 Bayer, S., and Ptok, A., “Don’t Fuss about Fuzzing:
Fuzzing Controllers in Vehicular Networks,” 2015.
[Online]. https://www.escar.info/images/Datastore/2015_
escar_EU_Papers/3_escar_2015_Stephanie_Bayer.pdf.

	12.	 Xavier, LLM Fuzz (previously fuzzforest), original-date:
2023-03-09T16:42:54Z, Nov. 2023. [Online]. https://
github.com/tree-wizard/fuzz-forest (visited on
11/19/2023).

	13.	 Cadena, X., LLMs to Write Fuzzers - Infinite Forest, en.
[Online]. https://infiniteforest.org/LLMs+to+Write+Fuzzers
(visited on 11/19/2023).

	14.	 Meng, R., Mirchev, M., Bohme, M., and Roychoudhury, A.,
“Large Language Model guided Protocol Fuzzing,” in
Proceedings of the Network and Distributed System
Security (NDSS) Symposium 2024, San Diego, CA, USA:
The Internet Society, Feb. 2024, isbn: 1-891562-93-2, doi:
10.14722/ndss.2024.24556. [Online]. https://dx.doi.
org/10.14722/ndss.2024.24556.

	15.	 Fowler, D.S., Bryans, J., Shaikh, S.A., and Wooderson, P.,
“Fuzz Testing for Automotive Cyber-Security,” in 2018
48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W),
Luxembourg: IEEE, Jun. 2018, 239-246, isbn: 978-1-5386-
6553-4, doi: 10.1109/DSN-W.2018.00070. [Online]. https://
ieeexplore.ieee.org/document/8416255/ (visited on
11/18/2023).

	16.	 Çelik, L., McShane, J., Scott, C., Aideyan, I. et al.,
“Comparing Open-Source UDS Implementations
Through Fuzz Testing,” SAE Technical Paper 2024-01-
2799 (2024), doi:10.4271/2024-01-2799.

	17.	 Kreissl, J., Fuzzing techniques - The Generator Menace,
en-US, Feb. 2021, [Online]. https://www.coderskitchen.
com/fuzzing-techniques/ (visited on 11/21/2023).

	18.	 Yi, H., Shiyu, S., Xiusheng, D., and Zhigang, C., “A study on
Deep Neural Networks framework,” in 2016 IEEE
Advanced Information Management, Communicates,
Electronic and Automation Control Conference (IMCEC),
Xi’an, China: IEEE, Oct. 2016, 1519-1522, isbn: 978-1-4673-
9613-4, doi: 10.1109/IMCEC.2016.7867471. [Online]. http://
ieeexplore.ieee.org/document/7867471/ (visited on
10/20/2023).

	19.	 Yenduri, G., Ramalingam M., Chemmalar Selvi G., Supriya
Y., et al., Generative Pre-trained Transformer: A

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

http://dx.doi.org/10.3390/s22239211
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736493/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736493/
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.csselectronics.com/pages/uds-protocol-tutorial-unified-diagnostic-services
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
https://github.com/google/AFL
https://www.escar.info/images/Datastore/2015_escar_EU_Papers/3_escar_2015_Stephanie_Bayer.pdf
https://www.escar.info/images/Datastore/2015_escar_EU_Papers/3_escar_2015_Stephanie_Bayer.pdf
https://github.com/tree-wizard/fuzz-forest
https://github.com/tree-wizard/fuzz-forest
https://infiniteforest.org/LLMs+to+Write+Fuzzers
http://dx.doi.org/10.14722/ndss.2024.24556
https://dx.doi.org/10.14722/ndss.2024.24556
https://dx.doi.org/10.14722/ndss.2024.24556
http://dx.doi.org/10.1109/DSN-W.2018.00070
https://ieeexplore.ieee.org/document/8416255/
https://ieeexplore.ieee.org/document/8416255/
http://www.sae.org/technical/papers/2024-01-2799
http://www.sae.org/technical/papers/2024-01-2799
http://dx.doi.org/10.4271/2024-01-2799
https://www.coderskitchen.com/fuzzing-techniques/
https://www.coderskitchen.com/fuzzing-techniques/
http://dx.doi.org/10.1109/IMCEC.2016.7867471
http://ieeexplore.ieee.org/document/7867471/
http://ieeexplore.ieee.org/document/7867471/

© 2025 SAE International. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, or used for text and data mining, AI training, or similar technologies, without the prior written permission
of SAE.

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work
lies solely with the author(s).

ISSN 0148-7191

LLM-POWERED FUZZ TESTING OF AUTOMOTIVE DIAGNOSTIC PROTOCOLS 	 9

Comprehensive Review on Enabling Technologies,
Potential Applications, Emerging Challenges, and Future
Directions, arXiv:2305.10435 [cs], May 2023, [Online].
http://arxiv.org/abs/2305.10435 (visited on 10/23/2023).

	20.	 Hou, X., Zhao, Y., Liu, Y., et al., Large Language Models
for Software Engineering: A Systematic Literature
Review, arXiv:2308.10620 [cs], Sep. 2023, [Online]. http://
arxiv.org/abs/2308.10620 (visited on 11/07/2023).

	21.	 C. Inc. “Cummins recalls over 12,000 engines due to
faulty engine control modules (ecms),” Accessed: 2024-
12-18. (Aug. 2022, [Online]. https://www.freightwaves.
com/news/cummins-recalls-faulty-engine-control-
modules-from-28-manufacturers.

	22.	 Xia, C.S., Paltenghi, M., Tian, J.L., Pradel, M., and Zhang,
L., Universal Fuzzing via Large Language Models,
arXiv:2308.04748 [cs], Aug. 2023. [Online]. http://arxiv.
org/abs/2308.04748 (visited on 11/05/2023).

	23.	 Gao, A., Prompt Engineering for Large Language
Models, en, SSRN Scholarly Paper, Rochester, NY, Jul.
2023. doi: 10.2139/ssrn.4504303, [Online]. https://papers.
ssrn.com/abstract=4504303. (visited on 11/14/2023).

	24.	 Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., and Iwasawa, Y.,
Large Language Models are Zero-Shot Reasoners,
arXiv:2205.11916 [cs] version: 4, Jan. 2023, [Online]. http://
arxiv.org/abs/2205.11916 (visited on 11/15/2023).

	25.	 Zhang, H., Dong, Y., Xiao, C., and Oyamada, M., Large
Language Models as Data Preprocessors,
arXiv:2308.16361 [cs], Aug. 2023, [Online]. http://arxiv.org/
abs/2308.16361 (visited on 11/17/2023).

	26.	 Lewis, P., Perez, E., Piktus, A., et al., Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks,
arXiv:2005.11401 [cs], Apr. 2021, [Online]. http://arxiv.org/
abs/2005.11401 (visited on 11/17/2023).

	27.	 “Road vehicles - cybersecurity engineering,” International
Organization for Standardization and Society of
Automotive Engineers International, Geneva, CH,
Standard, Aug. 2021.

Contact Information
John McShane
Eastern Michigan University
jmcshane@emich.edu

Iwinosa Aideyan
Clemson University
iaideya@clemson.edu

Mert D. Pesé
Clemson University
mpese@clemson.edu

Levent Çelik
Clemson University
lcelik@clemson.edu

Richard Brooks
Clemson University
rrb@clemson.edu

Acknowledgments
This work was supported by Clemson University’s Virtual
Prototyping of Autonomy Enabled Ground Systems (VIPR-
GS), under Cooperative Agreement W56HZV-21-2-0001
with the US Army DEVCOM Ground Vehicle Systems
Center (GVSC).

DISTRIBUTION STATEMENT A. Approved for public
release; distribution is unlimited. OPSEC # 9004

Definitions, Acronyms,
Abbreviations
AFL - American Fuzzy Loop
CAN - Controller Area Network
CRC - Cyclic Redundancy Check
DLC - Data Length Code
DNN - Deep Neural Network
DUT - Device Under Test
ECM - Engine Control Module
ECU - Electronic Control Unit
GAN - Generative Adversarial Network
GenAI - Generative AI
GPT - Generative Pre-training Transformer
IC - Intellectual Contribution
IVN - In-Vehicle Network
LLM - Large Language Model
ML - Machine Learning
OEM - Original Equipment Manufacturer
RTSP - Real-Time Streaming Protocol
UDS - Unified Diagnostic Services

Downloaded from SAE International by Clemson University Libraries, Tuesday, June 17, 2025

http://arxiv.org/abs/2305.10435
http://arxiv.org/abs/2308.10620
http://arxiv.org/abs/2308.10620
https://www.freightwaves.com/news/cummins-recalls-faulty-engine-control-modules-from-28-manufacturers
https://www.freightwaves.com/news/cummins-recalls-faulty-engine-control-modules-from-28-manufacturers
https://www.freightwaves.com/news/cummins-recalls-faulty-engine-control-modules-from-28-manufacturers
http://arxiv.org/abs/2308.04748
http://arxiv.org/abs/2308.04748
http://dx.doi.org/10.2139/ssrn.4504303
https://papers.ssrn.com/abstract=4504303
https://papers.ssrn.com/abstract=4504303
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2308.16361
http://arxiv.org/abs/2308.16361
http://arxiv.org/abs/2005.11401
http://arxiv.org/abs/2005.11401
jmcshane@emich.edu
iaideya@clemson.edu
mpese@clemson.edu
lcelik@clemson.edu
rrb@clemson.edu

	10.4271/2025-01-8091: Abstract
	Introduction
	IC-1: Development of a UDS Fuzzer Model
	IC-2: Effectiveness in Vulnerability Detection
	IC-3: LLM Created Test Cases
	Background
	In-Vehicle Network Basics
	UDS
	Fuzz Testing
	Fuzz Testing Techniques

	Related Work
	Methodology
	Black-Box vs. Gray-Box vs. White-Box Fuzzing
	Fuzz Testing Architecture
	Artificial Intelligence
	Developing Software with an LLM

	Results
	Experimental Setup
	Obtaining Training Data
	Modeling a Fuzzer with an LLM
	Inputting Data to the LLM
	Deploying the LLM-Generated Fuzzer

	Conclusion and Future Work
	Discussion
	Overview
	Limitations

	References
	Acknowledgments
	Definitions, Acronyms, Abbreviations

