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Enhancing Security Through Task Migration in
Software-Defined Vehicles
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Abstract—The growing trend of software-controlled operation,
control, and development of modern vehicles has led to
the emergence of the software-defined vehicle (SDV) design
paradigm. SDVs contain increasing software components and,
like other cyber-physical systems, are more susceptible to
cyber-attacks. However, patching vulnerabilities in these systems
may take time, exposing them to cyber threats. To limit
the effect of an attack, one solution is to migrate critical
tasks co-located on the same electronic control unit (ECU)
with a compromised component to another ECU. However,
existing migration solutions, often designed for fault tolerance,
introduce overhead and ignore security parameters. This
paper introduces ShiftGuard, a security-aware, distributed task
migration mechanism for SDVs. We explore various design
decisions that may affect the performance of ShiftGuard. We
implemented and demonstrated the efficacy of ShiftGuard on
an automotive platform running the controller area network
(CAN) protocol and found that the end-to-end latency of the
task migration decision is less than 17 ms for a system with
15 tasks hosted in 3 ECUs. We also performed extensive
design-space exploration using a custom-developed simulator.
Our experiments with synthetic workloads show that any task
migration request has a 76%-100% success rate. Additionally,
we demonstrate ShiftGuard’s scalability for large networks of
up to 70 ECUs, making it highly suitable for automotive systems
with SDV capabilities.

Index Terms—Software-Defined Vehicles, Security, Task
Migration, Resilience, Autonomous Vehicles.

I. Introduction
Software-defined vehicles (SDVs) are the next big shift

in the automotive world [1], where software takes over
more and more control of what a car can do. In today’s
smart vehicles, software handles everything from engine
performance to navigation and entertainment, making SDVs
a natural evolution of this trend. Current smart vehicles run
software systems with over 100 million lines of code [2].
As these vehicles transition to SDVs, this complexity is
expected to increase. The software tasks hosted by various
embedded systems, called electronic control units (ECUs),
vary in criticality. In addition, they usually come with
distinct security and safety considerations. A common industry
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Fig. 1. ShiftGuard illustration. The ECUs are connected via a gateway.
High-critical (yellow) and low-critical (blue) tasks coexist on the same ECU.
The tasks have a required security level (e.g., high , medium , and low

). An IDS monitors task behavior and maintains each task’s security level
( ), and the migration agents and orchestrator handles task migration
based on the required level. In this case, τ2 moves from ECU1 to ECU2

as a compromised task τ3 (red) reduces ECU1’s overall “trustworthiness”
(depicted with red meter) needed to run τ2. The shaded green components
(IDS, agent, and orchestrator) operate in a privileged space.

practice is that original equipment manufacturers (OEMs)
often integrate software components from various third-party
vendors or use commercial off-the-shelf (COTS) applications
(the majority of which are low-criticality tasks) across
numerous vehicle subsystems [3]. The complex interactions
and dependencies between tasks of different types result in
mixed-criticality tasks coexisting on the same ECU. In recent
years, attackers have exploited vulnerabilities in low-criticality
tasks, such as multimedia and connected services, and
used them to compromise critical tasks or even the entire
system [4]. Achieving a complete separation between critical
and non-critical tasks is challenging due to various factors,
including hardware limitations (e.g., single core, lack of
hardware partitions) and cost implications (e.g., performance
overhead, hardware cost, legacy compatibility) [5]. Ensuring
the security and reliability of SDVs will require addressing
these challenges through robust design and stringent security
measures.

Ensuring the safety and resiliency of SDVs requires
safeguarding tasks with high-criticality from compromised
ones in the event of a security breach. Automotive systems
often use software rejuvenation, that is, restarting the task
or the entire ECU to handle faults. While this can usually
resolve faults caused by transient errors, it is ineffective
against cyber-attacks, as the vulnerability persists and leaves
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an opportunity for the attacker to exploit as soon as the
task resumes. Moreover, the vulnerabilities responsible for a
cyber-attack may take days or weeks to be fixed [6]. This
waiting period presents a dilemma: either the vehicle continues
operating with a compromised component while waiting for
a patch from the OEM, or suspending the compromised
component reduces functionality (or, worse, safe drivability).
To mitigate this risk, one solution is to migrate critical
tasks to another ECU while waiting for a fix [7], [8].
Existing migration techniques [9], [10], [11] do not consider
vehicle security and, therefore, cannot be directly applied
to defend against cyber-attacks. Other solutions, such as
maintaining redundant copies of critical tasks for use during an
anticipated attack [12] or replicating the ECU using redundant
hardware [13] come with high costs (due to increased
weights and wiring complexity) and are cumbersome to
manage/debug.
Basic Idea. This paper introduces ShiftGuard, a
distributed security-aware task migration mechanism for SDVs
that does not require redundancy in hardware or software.
When a low-criticality task is compromised, ShiftGuard
identifies a suitable host ECU to migrate an uncompromised
high-criticality task. The migration process ensures that tasks
coexist securely on the destination ECU while meeting its
scheduling requirements. The migration can occur when the
vehicle is in either fail-operational or fail-safe modes (see
§VI). Fig. 1 illustrates the core concept of ShiftGuard,
focusing on task migration within a single zone.1 In
ShiftGuard, each task is assigned a security level (a runtime
measure of how likely it is to be compromised), and each
ECU is assigned a trust score (an aggregate of the security
levels of tasks it hosts, weighted by their criticality). Each
task also has a required security level that must be met
by the hosting ECU’s trust score. These metrics determine
whether tasks must be migrated after an attack is detected.
We provide formal definitions and computation methods for
these metrics in §II-C. Trusted agents within each ECU and an
orchestrator on the zonal controller facilitate task migration.
For instance, when a task τ3 is compromised (see Fig. 1),
the intrusion detection system (IDS), operated in a privileged
space, detects the attack and decreases its security level. This,
in turn, lowers the overall trustworthiness of hosted ECU1

( ). As a result, the uncompromised high-criticality task
τ2, which is hosted on the same ECU1 and has a specific
security level , no longer meets its required security level.
Thus, the migration agent needs to move it to another ECU.
The agent initiates the task migration process and informs
the orchestrator, which coordinates with agents on the other
connected ECUs. In the example shown in Fig. 1, ECU2

is selected as the suitable target that meets the required
security level and can accommodate τ2 without violating its
requirements. Thus, τ2 is moved to ECU2. Note that τ1 does
not need to be relocated since its required security level is
still met. If there is no optimal host location within the zone,

1In a zonal architecture, ECUs are grouped based on geographic zones.
A zonal controller manages the ECUs within the zone and handles
communication across zones. See §II-A for additional details.

then the orchestrator in the zonal controller will extend the
request to other zones.
Our Contributions. ShiftGuard is engineered to tackle
the design and operational phases of SDVs. In the design
phase, it helps system architects optimize system architecture
by simulating various configurations, such as the number
of zones and ECUs per zone. The design challenge
ShiftGuard addresses is the following: how do we balance
minimizing end-to-end latencies with maximizing successful
task migrations? This process is crucial for identifying the
best architecture that enhances resilience and ensures high
reliability in SDVs. In the operational phase, ShiftGuard
functions as a real-time task migration framework, securely
migrating high-criticality tasks when low-criticality tasks
are compromised. It ensures that migrations comply with
security and scheduling constraints, allowing for secure task
coexistence and maintaining system functionality even during
cyber threats. The core focus of ShiftGuard is providing
a recovery mechanism when a task is compromised while
awaiting security updates and patches for the vulnerabilities
that caused the attack, which may take a considerable time
(days or even weeks!). This ensures continued safe operation
despite vulnerabilities.

The main contributions of this paper are as follows.
• Introduction of a security-aware distributed task migration

architecture for SDVs (ShiftGuard) and formalized
analytical models to support that framework (§III).

• Parameterization of various system attributes to optimize
system behavior, allowing system designers to choose
attributes (such as number of zones and ECUs/zone)
that ensure security requirements while guaranteeing
timing requirements. ShiftGuard does so with minimal
performance overhead (§V).

We demonstrate the scalability of ShiftGuard for large
networks (up to 70 ECUs in 10 zones). Our results show
ShiftGuard can successfully migrate an affected task running
on a relatively vulnerable (less trusted) ECU to a trustworthy
one (see §IV-B and §V). We further validate ShiftGuard
’s feasibility using a physical hardware setup consisting of
four Raspberry Pi boards (§IV-C). Our experiments show that
ShiftGuard’s end-to-end latency is less than 17 ms on our
hardware testbed with 3 ECUs and 15 tasks.

II. Background and Models
We now start with a background on SDV (§II-A). We then

introduce the in-vehicle network architecture (§II-B), security
constraints (§II-C), and the threat model (§II-D) considered
in this paper. Key mathematical notations are listed in Table
III (see Appendix A).

A. Software-Defined Vehicles
SDVs mark a significant evolution in the automotive

industry, where software rather than hardware increasingly
controls vehicle functionalities, behaviors, and features.
This shift allows for greater flexibility, faster updates, and
seamless integration of advanced technologies, fundamentally

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3611875

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

transforming traditional automotive design [1]. A key aspect
of SDVs is the decoupling of hardware and software,
where software becomes the central driver of vehicle
operations, and hardware serves as a shared, flexible resource
[14], [15]. This decoupling is supported by hardware
abstraction, where standardized interfaces enable software
to interact with various hardware components independent
of vendor or platform. By being hardware-agnostic, SDVs
facilitate seamless interoperability between different systems,
enabling broader collaboration across manufacturers and
enhancing system adaptability for future advancements.
This decoupling of hardware and software in SDVs is
crucial in allowing flexible software migration across
different ECUs. A critical component driving SDVs is the
zonal architecture, which shifts away from the traditional
domain-based Electronic/Electrical (E/E) framework [16]. In
this architecture, ECUs are organized based on geographic
“zones” within the vehicle instead of dedicating each ECU to
a specific function or domain. Zonal controllers manage all
the ECUs and sensors within their respective zones to create a
more efficient system. These controllers are linked to a central
computing unit, which aggregates data and controls from
all zones, enabling centralized decision-making and greater
flexibility in software management. It is important to note that
the number of zones can vary depending on the requirements
and complexity of the vehicle [17].

B. System Components and Terminologies

We consider a heterogeneous distributed system with M
ECUs grouped into Z zones and connected by a zonal
controller (ζ). These controllers communicate through the
central computing unit. Each ECU ϵi schedules tasks using
a fixed-priority real-time scheduling policy. It is important to
note that we are targeting SDV systems where ECUs (they are
not micro-controllers) are not fully utilized, saving resources
(e.g., CPU and memory) to accommodate new functionalities
and support Over-the-Air updates. Each ECU has a trusted
IDS (such as RedZone [18]) and a trusted agent (α). The
agent is responsible for monitoring the health and security
of the tasks. When a task needs to be migrated, this agent
communicates with the orchestrator in the zonal controller.
Both the IDS and agent are securely protected from other
tasks on the same ECU through isolation mechanisms that
ensure their integrity. This is a realistic assumption, as modern
ECUs incorporate secure components like hardware-enforced
isolation, secure storage, and trusted computing modules for
executing critical tasks (for instance, the IDS and agent in
our context) [19], [20], [21], [22]. There are N real-time
tasks that can be mapped to any ECU. Each task τℓ is
defined by a tuple: {Tℓ, Dℓ, priℓ, (C

0
ℓ , . . . , C

M−1
ℓ )}. In the

task parameter tuple, Tℓ is the period, Dℓ the relative deadline
(Dℓ ≤ Tℓ), priℓ the priority, and C1

ℓ the worst-case execution
time (WCET) when the task is mapped to the ECU ϵ1.
The task is “schedulable” if its response time Rℓ (i.e., time
between arrival and completion) is less than the deadline, i.e.,
Rℓ ≤ Dℓ. The tasks may have data dependencies — if that is
the case, they form a directed acyclic graph (DAG). A DAG

is defined as Gρ = (Vρ, Eρ), where Vρ = {vρ,1, vρ,2....vρ,n}
is the set of vertices and Eρ ⊆ Vρ × Vρ is the set of
directed edges of the DAG. Each vertex vρ,ℓ ∈ Vρ represents
a task τℓ. An edge Eℓ,p = (vρ,ℓ, vρ,p) represents a precedence
relation between the task τℓ represented by vρ,ℓ and the task
τp represented by vρ,p. The DAG Gρ has an end-to-end
deadline De2e

ρ . The end-to-end latency Re2e
ρ can be computed

using existing techniques such as compositional performance
analysis (CPA) [23]. The DAG Gρ is schedulable if Re2e

ρ ≤
De2e

ρ . Each task τℓ is assigned a criticality level κℓ that reflects
its criticality and can be determined during the design phase.

C. Security Parameters
We now introduce three security parameters used in

ShiftGuard’s decision-making process. The security level σi
ℓ

represents the task’s current security status, which indicates
whether the task is compromised or benign. At runtime, the
IDS monitors and updates this level. Let Ci

IDS (0 ≤ Ci
IDS ≤

1) be the confidence level of the IDS on the ECU ϵi, FPRi

(0 ≤ FPRi ≤ 1) is the false positive rate of the IDS on ϵi,
and Iℓ is the impact of the attack on the task τℓ.2 Hence, we
can define the security level σi

ℓ as follows:

σi
ℓ = Ci

IDS · Iℓ · (1− FPRi) (1)

The trust score Si represents the trustworthiness (from a
task’s perspective) of the ECU ϵi, which is a function of the
criticality levels κℓ and security levels σi

ℓ of all tasks running
on the ECU. The trust score is dynamic and will change in
response to any changes in the security levels of the running
tasks. We define Si as follows:

Si =
∑
∀ℓ 7→i

ωℓ · σi
ℓ, (2)

where ωℓ = ĝ(κℓ) is an “weighting factor” which is a function
of the criticality of the tasks denoted by ĝ(). The notation
ℓ 7→ i denotes that τℓ is mapped to (running on) ϵi.

The required security level Rσℓ of task τℓ is the minimum
security level required to continue operating on the host ECU.
This level can be defined during the system design phase in
a similar way to how the automotive safety integrity level
(ASIL) [26] of each task is defined, albeit we adopt it for a
security perspective. The agent will monitor the security levels
for all tasks. If Rσℓ is not satisfied, the agent will attempt to
migrate τℓ and notify the gateway. An orchestrator running
on each zonal controller handles migration requests from the
agents.

To map a task τℓ to an ECU ϵi, we must ensure
Si ≥ Rσℓ. If a task τk : k 7→ i gets compromised,
its security level decreases, as does the trust score of
ϵi. To keep the system operational with all high-criticality
tasks running, ShiftGuard aims to define a lightweight
migration mechanism that ensures the security constraints of
other benign tasks are satisfied. In doing so, the migration
mechanism in ShiftGuard may stop a few tasks with low

2Earlier research shows (a) how to determine confidence level and false
positive rates, i.e., Ci

IDS and FPRi, respectively [24] and (b) the calculation
of attack impact factor, Iℓ [25].
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criticality levels to guarantee that the timing and security
requirements of other high-criticality, non-compromised tasks
are met. “Hence, the target ECU can host migrated tasks from
the potentially vulnerable originating ECU without losing
performance.

D. Threat Model
We assume that an attacker can compromise tasks using

known vulnerabilities of the automotive systems [27], [28].
This includes (but is not limited to) vulnerabilities such as
buffer overflow [29], remote code execution [30], or injection
attacks aimed at modifying the behavior of a compromised
task [31]. The adversary can launch an attack on a different
ECU starting from the compromised task (a stepping-stone
attack [4]). We assume the presence of an intrusion detection
module (viz., IDS) that can detect any misbehavior of tasks
caused by various attacks. We stress that we do not make
any assumptions on the design of IDSs. A vast literature
exists on automotive IDS (see the surveys [32], [33]) that
can be integrated with ShiftGuard. As IDSs are not perfect
(i.e., often result in false positives or negatives, even if it
was shown that such rates are very small [34], [35], [24]),
ShiftGuard accounts for this inaccuracy in the design; for
instance, see Eq. 1. We assume that the IDS and the agent
are protected from other tasks running on the same ECU
through isolation techniques. Furthermore, best practices such
as secure boot [36] should be followed to mitigate ECU-level
attacks. Protection against privilege escalation attacks that
may jeopardize the operation of trusted components (i.e.,
IDS, agent, and orchestrator) are not within the scope of
this work. Although the adversary can launch active spoofing
and passive eavesdropping attacks against the communication
on the in-vehicle network as a result of the compromised
ECU, using existing techniques [37] and protocols such as
IPsec, MACsec, and SecOC [38] can mitigate this attack
vector. Hence, the migration requests issued by the migration
agent are authenticated. Besides, we presume the existence of
mechanisms such as those proposed in early work [39] that
validate the migrated task before its execution.

III. ShiftGuard: Design and Analysis
In this section, we outline the workflow of ShiftGuard

(§III-A) and discuss its latency bounds (§III-B).

A. ShiftGuard Workflow
Figure 2 presents the steps of ShiftGuard. The migration

process initiates when any attack is suspected (Step 1). If
the IDS detects an attack for a compromised task τk, it
updates the security level σi

k and notifies the agent. The agent
calculates the trust score Si of ϵi and re-evaluates the security
requirements of all tasks 7→ i. If the agent detects that an
uncompromised task τm no longer meets its required security
level Rσm (i.e., Si < Rσm), it initiates a request to the
orchestrator on the zonal controller (Step 2) indicating the
need to migrate τm to an ECU with a higher trust score.
Upon receiving the request, the orchestrator sends inquiries to

all agents on other ECUs within the same zone to assess the
feasibility of accommodating task τm (Step 3). Next (Step 4),
each agent, on ϵj , receives the request from the orchestrator
and conducts a schedulability test to assess whether τm can
be scheduled. Additionally, it evaluates the potential impact
on the current local tasks, (i.e., whether they will miss their
deadlines). The agent then computes the hospitality factor Hm

j

depending on the schedulability test to determine if the ECU
can accommodate the request as follows:

Hm
j = K −

∑
∀l 7→j

∧
Rl>Dl

∧
l is low-critical

κl

−
∑

∀h7→j
∧

Rh>Dh

∧
h is high-critical

K · κh

(3)

where K =
∑

∀ℓ<N κℓ is a constant to scale the
hospitality values. By design, the agent considers sacrificing
low-criticality tasks to accommodate critical task τm. If all
tasks on ϵj meet their deadline, then Hm

j = K. If at least
one low-critical task misses its deadline with the presence of
τm, then 0 < Hm

j < K. If at least one critical task misses its
deadline, then the hospitality is negative Hm

j < 0. In addition,
the agent evaluates the trust score of the ECU Sm

j considering
τm as follows:

Sm
j =

∑
∀ℓ 7→j

∧
Rℓ≤Dℓ

ωℓ · σj
ℓ . (4)

Each agent then sends the computed parameters (Hm
j and

Sm
j ) to the orchestrator in their zonal controller (Step 5). The

orchestrator solves an optimization problem to determine the
optimal ECU (denoted as ϵt) for τm (Step 6). The solver on
the orchestrator works as follows.

Let P ϵ be the set of all ECUs in one zone that can
potentially be a candidate to migrate the task τm. Let us also
define a binary variable χj for every potential target ϵj ∈ P ϵ

and τm is a member of the DAG Gρ. Besides, let Re2e
ρ,m 7→j

denote the end-to-end latency of Gρ when τm is mapped to
ϵj . The solver computes Re2e

ρ,m 7→j for all ϵj ∈ P ϵ. We want
to find the best ECU for τm. We formulate a mixed integer
linear programming (MILP) [40, Ch. 5] problem as presented
below.
Objective:

max
χ

∑
∀j∈P ϵ

χj ·Hm
j (5)

Constraints:
∀j ∈ P ϵ : χj ·Rσm ≤ Sm

j (6)∑
∀j∈P ϵ

χj ≤ 1 (7)

∀j ∈ P ϵ : χj ·Hm
j ≥ 0 (8)

∀j ∈ P ϵ : χj ·Re2e
ρ,m 7→j ≤ De2e

ρ . (9)

The objective function in Eq 5 finds the maximal hospitality
factor where the task can be migrated. The constraint in
Eq. 8 guarantees that no critical task will be stopped to
accommodate τm. We note that the number of variables and
constraints grows linearly with the number of ECUs (agents).
If the orchestrator succeeds in finding an ECU ϵt to host τm
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Fig. 2. Workflow of ShiftGuard that starts with an attack detection of τ3 (Step 1) and ends with migration of τ2 in ECU2 (Step 8). ShiftGuard operates
in two phases: (a) first it checks if migration is feasible in the local zone (Phase I) and (b) if not, finds an ECU in another zone, which involves orchestrators
in other zonal controllers and central computing unit (Phase II).

(i.e., there exists a feasible solution), it sends the address of
ϵt to the agent on ϵi to start the migration (Step 7). We refer
to the steps discussed so far as Phase I.

If the orchestrator fails to find a suitable destination in
the local zone, ShiftGuard enters into Phase II. In this
phase, the orchestrator on the zonal controller initiates a
migration request to the orchestrator on the central computing
unit (Step 6.1). The orchestrator on the central computing
unit sends the hosting request to all other zonal controllers
(Step 6.2). The zonal controllers then relay this request to
their respective agents (Step 6.3). The agents on other zones
compute their trust score and hospitality (i.e., Sm

k and Hm
k )

values (Step 6.4) and share them with their zonal controllers
(Step 6.5). Each orchestrator uses this information and solves
the optimization problem (Eqs. (5)-(9)) to determine the most
suitable host for τm (Step 6.6) and informs its findings to
the central computing unit (Step 6.7). Based on the inputs
from the different orchestrators, the central computing unit’s
orchestrator invokes the solver to determine the “global” (viz.,
system-wide) optimal ECU, ϵt, who can host τm (Step 6.8).
The response is forwarded to the orchestrator on the zonal
controller (Step 6.9), which is then shared with the agent
on ϵi to start the migration (Step 7). Finally, the migration
process — including moving the task and maintaining the
interconnections of the migrated task with existing tasks on
the current ECU and tasks running on the other ECUs —
can follow existing AUTOSAR methods [41], [42] (Step 8).
To facilitate this, each agent uses a key to sign the migrated
task. The same key will be used by the agent on the host
ECU to validate the task before running it on the new host.
Alternatively, agents can use dedicated pairs of keys (public
and private keys) to ensure the integrity of the migrated task.
Note that the current ShiftGuard implementation does not
incorporate cryptographic signing mechanisms, and we leave
it for future work. It is worth noting that it is still possible
that no feasible host is available for migration, either locally
(within the same zone) or globally (across different zones). In
such a case, no migration will be executed (more discussion
about this case in §VI). Conversely, in some cases, multiple
ECUs could host the task, and they have the same hospitality

value. In this situation, we select the ECU with the smallest
index that can host the task. Algorithms 1 and 2, presented
in the Appendix B, demonstrate how ShiftGuard operates
from the agents’ and orchestrators’ perspectives, detailing the
distinct roles they play in the protocol.

B. Latency Calculation and Bounds

One of the design attributes in ShiftGuard is to determine
the end-to-end latency between Step 2 and Step 7. Note
that Step 8 is not part of the latency calculation analysis
as this a platform-specific part and depends on several
factors such as the network throughput, network load, and
the executable size. Recall that the migration mechanism in
ShiftGuard has two phases. In Phase I, the migration request
is handled and accepted by the zonal controller (which does
not include Step 6.1-Step 6.9). Let us denote the end-to-end
latency for Phase I as L (i.e., local end-to-end latency). In
Phase II, the migration request is forwarded to the central
computing unit (i.e., includes all the steps presented earlier).
We denote the end-to-end latency when entering Phase II
as E (i.e., global end-to-end latency). Let us introduce
a few notations before computing an upper bound on L
and E. Let Comagent→orch denote an upper bound on the
communication time from the agent to the orchestrator in
the zonal controller. Likewise, let Comorch→agent denote an
upper bound on the communication time in the other direction.
Also, let Comgate→mgate and Commgate→gate denote the
upper bounds on the communication times between a zonal
controller and the ceentral computing unit. In addition, let (a)
tsagent denote the maximum time any agent needs to compute
its Hm

j and Sm
j , and (b) tsorch denote the maximum time

needed by any orchestrator to solve its constraints.
Based on the above notations, we bound the local latency

L as follows:

L ≤ A(Comagent→orch +Comorch→agent + tsagent) + tsorch,
(10)

where A is the maximum number of ECUs (agents) connected
to one zonal controller. The global latency E is bounded as
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follows:

E ≤ Z ·L+Z · (Comgate→mgate+Commgate→gate)+ tsorch,
(11)

where Z is the number of zonal controllers (not including
the central computing unit). The parameters tsagent and tsorch
can be computed using existing WCET analysis tools [43].
By empirical measurements, we can evaluate Comagent→orch

and Comorch→agent. Notice that the parameters A and Z are
the unknowns in our design question (see §I). A key factor
affecting the efficiency of ShiftGuard is the how often Phase
II is involved, i.e., to determine the failure ratio to accept the
migration requests in the same (local) zone. Let 0 < F ≤ 1
represent this ratio. The challenge is then to bound F , which
is a function of various dynamically varying attributes such as
the security of the tasks at the moment of migration request
and the load on the ECU. The experimental results provide
more insights into the design parameters A,Z,E,L, F , as we
discuss next.

IV. Evaluation

We evaluate the efficacy of ShiftGuard on two fronts: (a)
broader design-space exploration with synthetic workload and
large automotive network (§IV-B) and (b) demonstration on a
Raspberry Pi-based hardware testbed running CAN protocol
(§IV-C).

A. Evaluation Criteria

Recall from our design problem (introduced in §I) that we
want to parameterize the attributes (ie, number of zones and
ECUs per zone) that reduce the end-to-end communication
latency and increase the chances of successful migration. To
solve our design problem, we introduce three questions which
we will answer and validate with our experiments.
• Q1: How efficient is it to keep the migrations within the

zone?
• Q2: Is it efficient to bypass the local zonal controller and

send each migration request to the central computing unit
(i.e., maintain no hierarchy)?

• Q3: What is the trade-off between the system parameters
(i.e., the number of zones Z and ECUs per zone A),
and the performance parameters (i.e., the local end-to-end
latency L, the global end-to-end latency E, and the failure
ratio to accept the migration requests in the local zone F )?

B. Experiments with Synthetic Workload

To get more insights about design parameters that affect
feasibility and efficiency and to answer our design questions,
we developed a simulator and conducted extensive design-
space exploration.

1) Simulator Design and Parameters: Our simulator can
accommodate multiple ECUs (represented by the agents),
zonal controllers (orchestrators), and a central computing unit.
Each entity in the simulator is designed as a Linux process.
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Fig. 3. The end-to-end latency and the solver time of two design decisions.
(a) Experiment I: the migration is made only within the same zone. (b)
Experiment II: a single-layer migration mechanism.

a) Simulation Setup: We generated N periodic tasks
with unique priorities (0 to N − 1). We randomly grouped
three to five tasks in one DAG and allocated three to five
tasks to each ECU. The utilization of each ECU was randomly
assigned by following a normal distribution with (0.6, 0.1)
as mean and standard deviation. The task utilizations were
generated using the UUniFast algorithm [44]. We assigned
task periods randomly as follows: Tℓ = f · p where
f ∈ {1, 2, 3, 4, 5, 6, 7, 8}, and p ∈ {280, 340, 450, 500} and
considered implicit deadlines (i.e., Dℓ = Tℓ). The criticality
levels were 1 ≤ κℓ ≤ 10, where κℓ scales with the priority.
Tasks with κℓ < 6 are considered non-critical tasks. The
security level 1 ≤ σi

ℓ ≤ 10 was generated randomly such
that it was smaller than 5 (i.e., middle of 10 levels) for
non-critical tasks. The required security level Rσℓ for each
task τℓ was computed as follows: (a) Rσℓ = 0.4 · σi

ℓ (for
non-critical task) or (b) Rσℓ = 3 · σi

ℓ (critical task). We
scheduled each ECU using a preemptive fixed-priority policy,
and the zonal controllers used time-division multiple access
(TDMA) arbitration.

b) Performance Metrics: We performed event-driven
simulation to mimic the workflow of an automotive system.
The simulator initializes the entities and randomly selects an
ECU (agent) and a non-critical task running on that ECU
(victim task) to launch the attack. If the security requirement
is violated (e.g., security level drops), the agent sends a
migration request. We measure the following parameters to
understand the performance of ShiftGuard: (a) solver time,
(b) end-to-end latency, and (c) the number of rejected requests.

Experiment I: Our first set of experiments focuses on the
relation between L and A and between F and A (i.e., Q1).
We ran the simulation 100 times for every A = 3, 4, 5, 6
considering Z = 1. We compute the solver run time tsorch,
the local end-to-end latency L, and the number of rejected
requests. Fig. 3a presents tsorch and L. Table I shows the
number of rejected requests. We found that L is less than
4 ms. However, the number of rejected requests is less than
24. Therefore, a migration request can be fulfilled with a
probability ≥ 76%. Increasing the number of ECUs will
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TABLE I
Rejected migration requests under different design decisions. Fewer rejections signify better efficiency. We color-coded the cells from green

(best) to red (worst) for visual ease.

Experiment I Experiment II* Experiment III
Scenario 1 Scenario 2 Scenario 3

Agents (M ) 3 4 5 6 25 30 35 40 25 30 35 40 15 20 25 30 30 30 28 24
Zone (Z) 1 1 1 1 N/A N/A N/A N/A 5 6 7 8 5 5 5 5 5 6 7 8
M per Z (A) 3 4 5 6 N/A N/A N/A N/A 5 5 5 5 3 4 5 6 6 5 4 3

Rejected req. (%) 24 16 18 10 3 0 0 0 2 0 0 0 0 2 2 1 1 0 0 2
*Experiment II does not involve any zonal controllers (independent of A and Z).

further improve the chances of accepting migration requests.

Observation 1. Despite low latency, the relatively high
failure ratio suggests that keeping the migration within the
zone is not very efficient (answers Q1 — is it efficient to
keep the migrations within the zone?).

Experiment II: This set of experiments addresses Q2.
In this setup, the agent sends the migration request to the
orchestrator in the central computing unit directly (i.e., no
zonal controller is included). The orchestrator in the central
computing unit asks all other agents (located in ECUs) in
the system directly to check if they can host the task that
requested migration. We computed tsorch, E, and the number
of rejected requests. We repeated the experiments 100 times
for each value of M . Fig. 3b and Table I report our findings.
As the result shows, the solver time tsorch is about five times
larger than the previous case (intra-zone) due to the increasing
number of agent communications. The experiment shows the
scalability of the optimization problem presented in Eqs. 5-9.
The solver takes less than 0.3 ms, where the number of
variables (agents) reaches 40. The latency E increases with the
number of agents. Figure 3b illustrates that the majority of the
end-to-end latency is spent on the communication where the
solver time represents a very small portion. The advantage of
this approach is the very low number of rejected migration
requests. The probability of accepting a migration request
increases to ≥ 97%. The main disadvantage is the high latency
(E) observed for each migration request, without the guarantee
that the destination ECU will belong to the same zone as
the task’s original zone. This may or may not be acceptable,
depending on the target application’s requirements.

Observation 2. A flat hierarchy results in near-zero
failure rates. However, this comes at a cost, i.e., latency
increases for migration requests (answers Q2 — maintain
a hierarchical architecture or no-hierarchy?).

We now present a trade-off between techniques explored in
Experiments I and II.

Experiment III: The final set of synthetic experiments
aims to examine the trade-off between the number of zones
Z and ECUs per zone A, i.e., explore Q3. We consider three
scenarios as presented below.

Scenario 1 We fixed the value of A = 5, then we ran the
simulation with Z = {5, 6, 7, 8} and 100 trials for each. This
experiment examines the impact of Z on local end-to-end
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Fig. 4. The local end-to-end latency L for Phase I, the global end-to-end
latency E for Phase II and failure ratio F as percentage for different values
of ECUs per zone (agents) A and number of zones Z. (a) Scenario 1: A = 5
and Z varies; (b) Scenario 2: Z = 5 and A varies; and (c) Scenario 3: A
and Z varies inversely. The failure ratio F decreases when the number of
agents per zone A increases.

latency L, global end-to-end latency E, and failure ratio F .
Fig. 4a and Table I present the results. As seen from the plots,
E grows linearly with Z while L is unaffected. The parameter
F , which appears as % on Fig. 4, shows no dependency on
Z. We further investigated the relation between Z and F in
our last setup (Scenario 3).

Scenario 2 We fixed the value of Z = 5, and then we tested
with A = {3, 4, 5, 6} and ran 100 times for each. The focus
of this experiment is understanding the impact of A on E and
again on F and L. We find that E grows linearly with A. This
is aligned with the relation between A and F we observed in
Experiment I, viz., the larger the A, the smaller the F . Also, L
grows linearly with A. Fig. 4b and Table I present the results.
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Fig. 5. Hardware testbed setup with four Raspberry Pi units: one representing
the Orchestrator and three representing agents, all are interconnected via CAN
bus.

Scenario 3 In this setup, A = {6, 5, 4, 3} and Z =
{5, 6, 7, 8} varies such that when Z increases, A decreases
(i.e., M = {30, 30, 28, 24}). Table I and Fig. 4c present the
results. L does not increase with Z, and E does not decrease
with A, which is also reflected in Eq. 11. This experiment
confirms that no relation exists between F and Z.

Observation 3. Investigating the trade-off between the
number of zones Z and ECUs per zone A reveals:
(i) There exists a direct relation between (1) A and local
end-to-end latency L, and (2) between Z and global end-
to-end latency E,
(ii) There also exists an inverse relationship between A and
the failure ratio F , and
(iii) It is possible to tune optimal values of A and Z based
on design requirements, but there are no theoretical optimal
values (answers Q3 — what are the trade-offs between
system and performance parameters?).

C. Experiments with Hardware Testbed
1) Testbed Setup: To demonstrate the feasibility and assess

the overhead of using ShiftGuard at runtime, we conducted
tests on a real hardware testbed comprising four Raspberry Pi
4 Model B embedded boards. This choice was made due to
their comparable processing power and memory capacity to
modern automotive ECUs [45]. Our test platforms (see Fig. 5)
are equipped with 1.5 GHz ARM-Cortex A72 64 bit SoC and
are mounted with either an RS485 Controller Area Network
(CAN) HAT or a 2-CH CAN HAT. Both CAN HATs modules
adopt an MCP2515 CAN controller and an SN65HVD230
CAN transceiver. All four boards are interconnected using
CAN and communicate at 500 kbits/s bitrate. Three of these
devices represent ECUs, each hosting various tasks, an agent,
and an IDS. The fourth one serves as the zonal controller.
One of the three ECUs hosts a vulnerable task susceptible to
a buffer overflow attack triggered by receiving malicious data
as an external message. Subsequently, the agent initiates the
migration process in response to the attack.

2) Results: We conducted the experiments 100 times. We
measured the local end-to-end latency L starting from the
agent’s request for a task migration to the receipt of the
outcome from the orchestrator. We also measured tsagent (the
maximum time any agent needs to compute its Hm

j and Sm
j )

and tsorch (the maximum time needed by the orchestrator

0 5 10 15

L

tsagent

tsorch

Time (ms)

0 0.2 0.4 0.6 0.8 1

Fig. 6. ShiftGuard performance on hardware testbed. The solver on the
orchestrator tsorch and agents tsagent consume less than 0.2 and 0.8 ms,
respectively, to find a migration host for a setup with 15 tasks.

on any zonal controller to solve its constraints). As Fig. 6
depicts, the orchestrator requires less than 0.2 ms to identify
the optimal destination location (if it exists). Similarly, the
agent requires a relatively short time to compute Hm

j and
Sm
j (less than 0.7 ms). To put this in context, the end-to-end

latency is between 13 ms and 17 ms in most cases. This further
demonstrates the efficacy of ShiftGuard as the end-to-end
latency for CAN messages ranges from a few milliseconds
to seconds [46], [47]. Our experiments suggest that the most
time-consuming part is attributed to the message exchanges
between agents and the orchestrator, which is also influenced
by the communication link (see §VI for a compassion of the
latency when using Ethernet instead of CAN).

Key Findings. ShiftGuard is deployable in a commodity
automotive setup with protocols such as CAN. The
overhead of ShiftGuard is minimal, with the orchestrator
computation time under 0.2 ms and agent processing time
less than 0.7 ms.

V. Parameterizing ShiftGuard
Our experiments show that ShiftGuard can guarantee

fulfilling up to 100% of all migration requests while only 33%
to 13% of all migration requests may suffer from an end-to-end
latency ≤ E. 67% to 87% of all migration requests will be
fulfilled within a latency ≤ L, which is at least 30 times
shorter than E. However, all results are functions of A and
Z. We can formulate an MILP optimization problem to further
evaluate the trade-offs between A and Z.
Objective:

min
A,Z

FE − (1− F )L (12)

Constraints:
0 < F = f(A,S,Λ) ≤ 1 (13)

L ≤ A(Comagent→orch + Comorch→agent + tsagent) + tsorch
(14)

E ≤ Z ·L+Z · (Comgate→mgate+Commgate→gate)+ tsorch
(15)

A× Z ≤M : A ∈ N∗ ∧ Z ∈ N∗ ≤ A. (16)

In the above equations, S represents the trust scores of the
ECUs, and Λ represents the load on the ECUs when agents
receive the hosting requests. In this optimization problem,
the failure ratio F and the local end-to-end latency L are
functions of the number of agents in one zone, i.e., A, as
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Fig. 7. The failure ratio to accept a migration request within the local zone F and the local end-to-end latency L as functions of the number of agents
(ECUs) per zone A. The blue curve in (a) represents our results. The red curve illustrates the approximation of the results represented by the power law
based fit function (2/(1+A1.609472)), which is the best representation of our data. The black and the orange curves represent the exponential decay and the
logarithmic fit functions respectively. The green rectangle in (a) highlights the recommended number of agents per zone. In (b), the green rectangle signifies
the corresponding end-to-end latency for the recommended values of A.

Eq. (13) and Eq. (14) show. While the values of F decrease
for the larger number of agents, L actually increases. To
illustrate this relation and its impact on the optimization, we
computed F and L for A = {2, . . . , 15}. For each value
of A, we ran the experiment 1000 times. Figure 7 presents
the results. For instance, Fig. 7a confirms that having more
ECUs in one zone can increase the probability of accepting
the migration request locally, i.e., reducing F significantly.
However, the improvement becomes slower after A > 7. For
A = 7 we obtained F = 0.076, and for A = 8 we have
F = 0.068. The local end-to-end latency L will increase
dramatically: for A = 7 the latency L ≤ 6.63, while for
A = 8 the latency increases to L ≤ 23.61. Hence, we select
A = 7 as an optimal value in our experiments (§ IV-B).
F is a function of other parameters, namely the load on
the ECU and the trust scores of the ECU. Both change
dynamically due to the migration of tasks and cyberattacks.
We chose to explore the power-law model because it naturally
captures diminishing returns: as the number of ECUs per
zone increases, the failure ratio decreases, but with smaller
and smaller improvements. This behavior aligns with long-tail
decay patterns seen in power-law distributions. Therefore,
we show here an example of defining a fit curve of the
observed results. We followed three well-known models:
Power law (α/(1 +Aβ)), Exponential decay (α . e(βA)), and
the Logarithmic (α + β ln (A)). As any safe fit curve should
be above all the experimental data, we added this constraint to
the fit function. The three curves are illustrated in Fig. 7a. We
computed the Coefficient of Determination (R2) and the Root
Mean Squared Error (RMSE) of each fit curve. The power
law-based fit curve explains the experimental data very well
(R2 = 0.9937, RMSE = 0.0196). Note that the MILP is
sensitive to the failure ratio F . Therefore, the designer should
select the best safe fit curve for it.

The second parameter in the optimization is the number
of zones Z. Hence, we fix the number of agents to A = 7.
From Eq. (15), the global end-to-end latency is a function of
Z. The relation between E and Z is illustrated in Fig. 8 for
Z = {2, . . . , 10}. For each value of Z, we ran the experiment
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Fig. 8. The relationship between the global end-to-end latency E and the
number of zones Z when A = 7, showing an increase in E with the increase
of Z. The figure shows the scalability of ShiftGuard up to 70 ECUs (Z = 10
and A = 7).
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Fig. 9. The global failure probability (ϕ) when using a different numbers of
zones (Z). The ϕ remains negligible across varying zone numbers (Z).

1000 times. Our experiments find the suitable number of zones
for a given latency constraint. For example, if E ≤ 150 ms,
ShiftGuard should not utilize more than Z = 6 zones. This
experiment shows the scalability of ShiftGuard up to 70
ECUs (Z = 10 and A = 7).

VI. Design Considerations

Lack of Migration Candidates. There may be cases when
no feasible host is available for migration, either locally
(within the same zone) or globally (across different zones).
To investigate the likelihood of such a scenario, we analyzed
the global failure probability (ϕ) across 2 to 10 zones. We
ran the experiment 1000 times for each zone. Our findings,
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illustrated in Fig. 9, suggest that the probability of such an
event is minimal for most cases and almost impossible for
systems with a higher number of zones (viz., 7 or more).
However, despite its rarity, safety-critical automotive systems
must have functionalities to tackle such events. One approach
is sacrificing the least critical task among those present on
one of the ECUs within the same zone, provided that the
task earmarked for migration is not the least critical one.
We note that sacrificing such a task does not mean stopping
the task completely for the whole duration till receiving an
update. Instead, it keeps working without guaranteeing to meet
deadlines for all jobs (note: often time-critical systems can
tolerate a few deadline misses [48]).

Stress Testing Under Multi-ECU Attacks. Another
scenario where finding suitable migration hosts becomes
challenging is when attackers exploit multiple tasks on
different ECUs at the same time [49]. While such attacks
are harder to implement in practice, ShiftGuard can handle
concurrent migration requests. However, supporting such
requests is limited by the availability and capacity of
uncompromised ECUs to host the tasks requiring migration.
To examine this scenario in more detail, we conducted a new
experiment. We modeled a system with Z = 6 zones, each
containing A = 7 agents. We assumed that one zone is under
attack, with 2, 3, or 4 ECUs compromised. Additionally, the
ECUs were placed under high load conditions with utilization
levels U = 0.7, 0.8, 0.9. All other experimental settings
followed those in previous evaluations. We measured the local
failure ratio F (i.e., failure to find a host in the same zone)
and the global failure probability ϕ (i.e., failure to find a host
anywhere in the system). Each configuration was tested with
100,000 runs. The results, shown in Fig. 10, indicate that
system load has a major impact on the ability of ShiftGuard
to find a valid migration target. In extreme cases where U =
0.9, the local failure ratio exceeded 95.23%, and the global
failure probability also rose significantly, with ϕ ≥ 68.64%.
Interestingly, the number of compromised ECUs within the
attacked zone had a smaller impact than expected. Across all
tested values (2–4 compromised ECUs), the availability of
suitable migration targets remained more strongly correlated
with system load than with the number of attacks.

When to Perform Migration. Migration can occur when
the vehicle is fail-operational or fail-safe modes. For instance,
when the vehicle is safely stopped/parked (i.e., the bus usage
is minimal), a migration may trigger (fail-safe). However, it
does not preclude migration events from occurring when the
vehicle is running if the bus usage and message latency are
acceptable (fail-operational). The choice of operation (by the
designers) depends on the corresponding end-to-end latency
(either in Phase I or Phase II) and the real-time requirements
of the migrated tasks. For instance, if the latency is less
than the job’s deadline, migration can occur in fail-operational
mode. Conversely, if the latency exceeds the job’s deadline,
the system may switch to fail-safe mode to ensure safety.
In such a case, migration should be performed when the
car is parked to ensure the availability of the bus while
also facilitating all the required message exchanges. We note

that the communication link influences end-to-end latency. To
emphasize this point, we repeated the measurement conducted
in §IV-C on the hardware testbed, using Ethernet to connect
the different ECUs and the gateway instead of CAN. The
higher bitrate of Ethernet results in a 50% reduction in
end-to-end latency compared to CAN. The results are shown
in Fig. 11. However, it is important to note that network
congestion or degraded link conditions can unpredictably
increase latency, which may delay or temporarily prevent
migration. In such cases, the system can defer migration until
conditions improve by switching to fail-safe mode, where the
vehicle is in a controlled state (e.g., parked), ensuring stable
communication and safe execution of the migration process.
Security Considerations. We assume that a host-based IDS
to detect task-level anomalies, which serves as the trigger
for task migration. While the internal design of the IDS is
beyond the scope of this work, we acknowledge that IDS
imperfections can affect system behavior. False negatives
may delay or suppress necessary migrations, potentially
compromising safety by allowing unsafe task co-location.
False positives, on the other hand, may lead to unnecessary
migrations, increasing both computational and communication
overhead. These issues become more serious if false positives
occur frequently. We further stress that a good IDS should
be cognizant of (repeated) false positives. While we did
not explicitly model repeated IDS errors, Fig. 10 partially
reflects this case by simulating multiple concurrent migration
triggers under various system load conditions. These stress
scenarios show what could happen if the IDS produces
frequent alerts, whether accurate or not. The results show
that ShiftGuard maintains stable operation in these high-load
conditions. However, testing system behavior under targeted
IDS misbehavior, such as a series of low-confidence or
incorrect alerts, is left for future work. It is also possible
to include safeguards such as minimum-confidence thresholds
to reduce the impact of frequent or noisy IDS outputs.
Finally, while the migration mechanism enhances security,
it also momentarily expands the system’s attack surface
by introducing additional message exchanges and control
logic. However, these communications are authenticated
and integrity-protected using standard in-vehicle security
protocols, and trusted components (IDS, agent, orchestrator)
are isolated from untrusted tasks, limiting the risk of
exploitation during migration.

VII. Related Work

Task migration is primarily employed to ensure safety [12],
[10], [13] and optimize resource utilization [50], [51] by
intelligently redistributing computational tasks among various
ECUs within the same vehicle. Various techniques exist to
address anomalous tasks and ensure safety. One approach
is to deploy redundant ECUs for critical tasks, either on
a one-to-one basis [9] or by employing a single redundant
ECU for groups of ECUs [13]. However, these solutions pose
challenges such as increased costs or the potential bottleneck
of a single node serving multiple others. Other solutions
include maintaining backup instances of tasks on predefined
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Fig. 10. Comparison of the failure ratio (F ) and the global failure probability ϕ vs Number of Compromised ECUs under high load.
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Fig. 11. Comparison of end-to-end migration latency L using CAN and
Ethernet. Ethernet achieves approximately 50% lower latency compared to
CAN due to higher bitrate.

ECUs [12] or dedicated backup hardware [13]. However, these
techniques result in a single point of failure (for instance, when
the ECU is compromised) and are also limited to protecting
only a small number of tasks (specifically, those with a backup
instance). Another possibility is to integrate extra hardware
and maintain a backup instance for every task across different
ECUs [52]. When an ECU fails, its tasks’ backup instances
migrate to the extra hardware. But, this approach is limited in
migrating only a few tasks and faces scalability issues.

Limited literature exists on the task migration problem
without redundant hardware or instances. For example,
Baik et al. [50] propose a task migration approach where
low-criticality tasks are migrated to neighboring devices to
ensure that high-criticality tasks have sufficient resources and
can meet their deadlines. Nevertheless, such a solution does
not consider the case of migrating high-criticality tasks to
another ECU for any reason. Another solution [11] proposes
to migrate critical tasks from a failed ECU to replaceable
ECUs using network connections. However, this approach
does not scale well, as migration is confined to the ECU
with a connection to the failed ECU. Additionally, it relies
on stable network connectivity, which could be a potential
point of failure.
Comparative Analysis. Table II compares ShiftGuard
with existing research. The comparison is based on five
criteria: (i) whether they are built for (or can be adaptable
to) SDVs (“SDV Compatibility” column in Table II), (ii) the
need for redundancy in hardware or software components
(“Redundancy” column ), (iii) the dynamicity of the operation
and its capacity to migrate different tasks (not predefined or
limited set of tasks) at run time (“Dynamic” column), (iv)
the distributed nature of the solution, allowing for migration

without reliance on a single component to make the decision
(“Distributed” column), and (v) the security awareness for the
migration process, i.e., whether the migration is intended to
minimize security threats (“Security” column).

Unlike many existing solutions [13], [12], [52], Shift-
Guard does not require any dormant instances of tasks or
backup hardware. Thus, it avoids any overhead inherited from
redundant hardware or software. In addition, it adapts to
runtime changes and is not limited to the predefined migration
policy as considered in prior work [13], [12], [52], [11].
Also, our solution was built in a distributed nature and avoids
needing a single node to decide the migration process, as
was the case in earlier research [13], [10], [11], [50]. Finally,
ShiftGuard is designed to improve security posture, using
novel metrics (e.g., “trust score” and “security level”), unlike
most work focusing on task migration for safety or resource
utilization purposes.

One could argue that many of these solutions can be
extended to cover security awareness. This is not always
true — solutions that use redundant software components
or hardware [13], [12], [52] are limited to protecting these
specific tasks or are restricted by the capacity of the redundant
hardware. Other solutions that aim to migrate noncritical tasks
only [50] cannot be extended for security. This is because
migrating non-critical tasks — which are more vulnerable to
attacks — without considering the security requirements of
existing tasks on the host ECU could potentially introduce
a new attack surface on the destination ECU. Finally, most
solutions are not compatible with SDV from the ground up,
but some can be retrofitted, while our proposed solution
is built with SDV capabilities in mind. We stress that (a)
the differing nature of ShiftGuard from existing work, (b)
the difficulty of reproducing previous results and lack of
open-source releases, and (c) the use of different platforms
make empirical comparison between our work and the other
research discussed above unfeasible and irrelevant. In addition,
as most prior work was not originally designed with security
in mind, direct security comparisons are limited. Instead,
we highlight how ShiftGuard fills this gap by explicitly
incorporating security metrics into the migration process.

VIII. Conclusion

This paper introduces ShiftGuard, a distributed, security-
aware task migration mechanism for SDVs. It aims to facilitate
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TABLE II
Comparison of ShiftGuard with the state of the art.

Solution SDV Compatibility Redundancy Dynamic Distributed Security

Baik et al. [50] None
Baik et al. [11] None
Chen et al. [52] HW & SW
Delgadillo et al. [10] None
Huang et al. [13] HW
Weiss et al. [12] SW
ShiftGuard None

Yes Partially or N/A Not from ground up, but can be retrofitted No

task migration in response to security exploits targeting
tasks on ECUs without relying on hardware or software
redundancy. Our experiments on real hardware testbeds show
that ShiftGuard can be deployed with low overhead (in the
ms range). In addition, our comprehensive synthetic test cases
show that any task migration request has a probability of
76%-100% to be successfully fulfilled and scaled to 70 ECUs
in 10 zones. Using techniques such as those proposed in
this work, modern software-controlled vehicles can maintain
operational efficiency, safety, and security when a task is
compromised. As a result, vendors can minimize downtime
to fix the vulnerabilities that led to the breach.
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Appendix
A. Table of Notations

The list of mathematical notations used in the paper is
summerized in Table III.

TABLE III
Key mathematical notations used in this work.

Not. Description

τℓ Task
Tℓ Period of τℓ
Dℓ Relative deadline of τℓ
priℓ Priority of τℓ
Ci

ℓ Worst-case execution time of τℓ when it is scheduled on ϵi
ωℓ A weighting factor based on the criticality τℓ
Gρ Direct acyclic graph (DAG)
De2e

ρ End-to-end deadline of Gρ

Re2e
ρ End-to-end response time of Gρ

ϵi ECUi

σi
ℓ The current security level of τℓ on ϵi

Ci
IDS The confidence level of the IDS on ϵi

FPRi The false positive rate of IDS on ϵi
Iℓ The impact of the attack on task τℓ
Rℓ Worst-case response time of τℓ
Rσℓ The required security level of task τℓ
Si Trust score of the ϵi
Z Number of zones in the network
Hm

j Hospitality, the ability to accommodate task that seeks to
migrate τm on the ϵj

A Number of agents, i.e., ECUs in one zone
Sm
j Trust score of the ϵj considering the task that seeks to migrate

τm
F The failure ratio to accept the migration request in the same

(local) zone
E The end-to-end latency between sending the migration request

and receiving the response across multiple zones
L The end-to-end latency between sending the migration request

and receiving the response within one zone
Φ The global failure probability

B. Agent and Orchestrator Roles
Algorithm 1 and Algorithm 2 present how the ShiftGuard

is operated from the agents’ and the orchestrators’ perspective
and the different roles they play during the protocol. The
color used in each part of the algorithm represents different
roles for the agent (as a migration requester on the local
ECU or on a potential host ECU) and for the orchestrator
in various locations (on the local zonal controller, another
zonal controller, or the central computing unit). The colors
correspond to those used for the agent and orchestrator in
Fig. 2.

Algorithm 1 shows the two roles of the agent (requester
and responder). Each agent checks continuously if there is
any task τk that is compromised (Line 3). If this is the case,
the agent recomputes the trust score of the ECU Si and
checks if the required security level Rσm is still satisfied
(Line 5-Line 7). If there exists a task τm for which Rσm

is violated, the agent moves it from Step 1 to Step 2 in
the ShiftGuard protocol. In this step, a migration request
is initialized (Line 9) and sent to the local zonal controller
(Line 11). The agent waits for an answer from the local
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Algorithm 1: ShiftGuard Operation — Agent
1 /* Agent as requester on ϵi */
2 /* τk reported compromised by the IDS */
3 if is compromised(τk) then
4 /* Calculate trust score using Eq. (2) */
5 Si ←

∑
∀m 7→i ωm · σi

m

6 for τm : m 7→ i do
7 if Rσm > Si then
8 /* Generate a migration request message */
9 msg ←

{Tm, Dm, prim, (C0
m, . . . , CM−1

m ), Rσm}
10 /* Send a request to the orchestrator */
11 send request(msg)
12 /* Receive the response from the orchestrator */
13 dest← receive response()
14 if dest ̸= None then
15 migrate(τm, dest)
16 return
17 end
18 end
19 end
20 end
21 /* Agent as host on ϵj */
22 msg ← receive orch request()
23 schedulability test({∀ℓ 7→ j}

⋃
{m})

24 if Rm ≤ Dm then
25 /* Calculate hospitality using Eq. (3) */
26 Hm

j ← K −
∑

∀l 7→j
∧

Rl>Dl

∧
l is low-critical κl −∑

∀h 7→j
∧

Rh>Dh

∧
h is high-critical K.κh

27 /* Calculate the trust score (Eq. 4) */
28 Sm

j ←
∑

∀ℓ 7→j
∧

Rℓ≤Dℓ
ωℓ · σj

ℓ

29 else
30 /* Not possible to host the task, flag with None */
31 Hm

j ← None
32 Sm

j ← None
33 end
34 /* Send the response to the orchestrator */
35 send agent response({Hm

j , Sm
j })

zonal controller (Line 13) in Step 7. Finally, if ShiftGuard
managed to find a new host that satisfies the required security
level of τm, the agent moves to Step 8 and starts the migration
process (Line 14-Line 15). If all tasks are secure on ϵj , the
agent on that ECU may receive (Step 3 and Step 6.3) a
request from the local zonal controller to host a task (Line 21).
The agent first checks the schedulability of the hosted tasks
considering the new task (Line 22). If the new task can
meet its deadline, the agent computes the hospitality and
security parameters (Line 23-Line 27), otherwise, the agent
rejects the hosting request by assigning None (Line 28-32).
Line 22-Line 31 represent Step 4 and Step 6.4. Next, the
agent sends the response back to the zonal controller (Line 34)
in Step 5 and Step 6.5, See Fig. 2.

Algorithm 2 illustrates the roles of the orchestrator based
on their location (i.e., on the central computing unit,

Algorithm 2: ShiftGuard Operation — Orchestrator
1 /* Orchestrator on the local zonal controller */
2 msg ← receive request()
3 foreach α ∈ Agents do
4 /* Send the request to each agent */
5 send orch request(msg)
6 /* Receive agent’s response: hospitality and trust score */
7 (H,S)← receive agent response()
8 end
9 /* Find a destination by solving Eqs. (5)-(9) */

10 dest← find dest(H,S)
11 if dest ̸= None then
12 send response(dest)
13 else
14 /* Forward its ID and the request to central computing

unit */
15 send ccu request(ζid,msg)
16 dest = receive ccu response()
17 send response(dest)
18 end
19 /* Orchestrator on the central computing unit */
20 (ζid,msg)← receive ccu request()
21 foreach ζ ∈ Zones do
22 send zone request(msg)
23 (H,S)← receive zone response()
24 end
25 /* Find a destination by solving Eqs. (5)-(9) */
26 dest← find dest(H,S)
27 /* Send the response to the requested zonal controller ζid */
28 send ccu response(ζid, dest)
29 /* Orchestrator on another zonal controller */
30 msg ← receive zone request()
31 foreach α ∈ Agents do
32 /* Send the request to each agent in the zonal controller

*/
33 send orch request(msg)
34 /* Receive agent’s response: hospitality and trust score */
35 (H,S)← receive agent response()
36 end
37 /* Find a destination by solving Eqs. (5)-(9) */
38 find dest(H,S)
39 send zone response({Hm

j , Sm
j })

local zonal controller, or another zonal controllers). When
the orchestrator is running on a zonal controller, it may
receive a migration request from a local agent (Line 2) as
part of Step 2. The orchestrator forwards the message to
the other local agents as a host request (Line 3-Line 5),
which is Step 3 in the protocol. In Line 7, the orchestrator
waits and collects all values of hospitality and security
(Step 5). Using optimization formulation in Eqs. (5)-(9), the
orchestrator tries to find the best ECU to host the task
τm (Line 10). This step is Step 6 in the protocol. If a
destination is defined, the orchestrator sends it to the agent,
which initializes the migration request (Line 11-Line 12).
That completes Step 7. If the migration request is not
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accepted locally, Step 7 will be delayed and instead, the
orchestrator on the local zonal controller will initialize a
migration request and send it to the central computing unit
(Line 13-Line 15). This action is Step 6.1. The orchestrator
then will be waiting for the response from the central
computing unit (Line 16), which comes in Step 6.9. In Step 7,
the orchestrator forwards the answer to the dedicated agent
(Line 17). The orchestrator on the central computing unit
may receive a migration request from a zonal controller
(Line 20). If this is the case, the orchestrator forwards the
message as a host request to all other zonal controllers
(Line 21-Line 22) in Step 6.2. The orchestrator on the central
computing unit waits and collects (Line 23) the responses
in Step 6.7. Then, in Step 6.8, it solves Eqs. (5)-(9) to
find the best destination for the task τm (Line 26). Finally,
the orchestrator on the central computing unit sends the
response to the orchestrator on the zonal controller (Line 28)
in Step 6.9. The last role the orchestrator may play is on
a zonal controller when it receives a host request from the
central computing unit (Line 30). In this role, the orchestrator
forwards the request to the agents on the directly connected
ECUs (Line 31-Line 33) in Step 6.3. Like other roles,
the orchestrator collects the hospitality and security values,
computes potential destination, and sends its hospitality and
security values as a response to the central computing unit
(Line 35-Line 39) in Step 6.5,Step 6.6,Step 6.7 respectively.
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