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Abstract
We propose a framework that leverages Large Language

Models (LLMs) for adversarial scenario analysis in Au-
tonomous Vehicles (AVs), generating interpretable explana-
tions for anomalies and bridging the gap between detection
and semantic understanding. Conventional Deep Neural Net-
works (DNNs) lack robustness against adversarial perception
attacks and provide limited interpretability. To address these
limitations, our method uses LLMs to process structured ve-
hicular data encoded in a Domain-Specific Language (DSL),
incorporating the Manual on Uniform Traffic Control Devices
(MUTCD) as a formal knowledge base. Leveraging zero-
shot chain-of-thought (CoT) prompting, the framework distin-
guishes benign sensor errors from adversarial manipulations
through stepwise reasoning. We introduce AutoSec-X , a
dataset of 40 MUTCD-based driving scenarios, to evaluate
LLM architectures, demonstrating that larger models (e.g.,
Gemini) exhibit superior domain-specific reasoning, often cit-
ing relevant MUTCD sections. Results validate the effective-
ness of CoT-augmented LLMs for semantic anomaly analysis
in AVs without labeled training data. Future work will extend
AutoSec-X and investigate multimodal inputs 1.

1 Introduction

Autonomous Vehicles rely on the autonomous driving sys-
tem (ADS) to achieve autonomous driving capabilities. The
ADS combines perception, planning, and actuation modules
to enable autonomous navigation [33, 36]. The perception
module employs deep learning methodologies such as deep
neural networks (DNN) to enable processing and application
of perceptual data for obstacle classification, road surface
segmentation, object detection [6, 17, 28], etc.

While these DNN models can effectively detect, track, and
predict the movements of nearby objects [26,39], they are vul-
nerable to physical perturbations that lead to adversarial per-

1The Dataset and implementation code of this work is available at https:
//github.com/tigerseclab/VehicleSec25_LLM_Reasoning

ception attacks. Malicious actors manipulate physical-world
integrity — such as altering traffic signs or obscuring obsta-
cles — to mislead DNN models and disrupt the vehicle’s
decision-making [11, 20]. While DNNs can effectively detect
anomalies they have encountered during training or bearing
close similarity to known patterns, they lack the capacity for
integrated semantic reasoning. Consequently, they struggle
with new or adversarial scenarios that require understanding
context or meaning beyond learned patterns [18, 27]. By con-
ducting analysis of driving scenarios using Large Language
Models (LLMs) semantic reasoning, we could identify recur-
ring environmental contexts, such as zones with dense signage
or unusual signage that cause DNNs to struggle. These in-
sights could guide the development of more robust training
datasets and targeted adversarial training.

Recent research has explored semantic anomaly detection
using LLMs. For instance, studies have demonstrated that
LLMs can monitor vision-based policies and identify seman-
tic inconsistencies in robotic systems through human-like rea-
soning [9]. Similarly, zero-shot anomaly detection techniques
in time-series data [4] and industrial settings [22] highlight
the potential of LLMs for detecting anomalies without ex-
plicit training on labeled anomaly data. However, these works
do not address AV-specific anomaly detection using LLMs.

To bridge this gap, we propose a novel anomaly detection
approach that leverages pre-trained LLMs in a zero-shot chain-
of-thought (CoT) manner to reason about possible anomalies
in the driving environment. Unlike traditional DNN models,
which rely on predefined patterns or anomaly-labeled datasets,
our method enables AVs to identify and explain anomalies
without requiring examples in the training data. For instance,
if a school zone sign is altered from 25 mph to 45 mph, a
DNN-based model would likely fail to recognize the violation
due to its lack of contextual understanding, whereas an LLM
can explain it based on its broader contextual understanding.

Furthermore, we envision that this tool could be used for
forensic purposes by using data from a mandatory Event
Data Recorder [29] or Automated Driving System Data Log-
ger [37] — which are becoming increasingly common in

https://github.com/tigerseclab/VehicleSec25_LLM_Reasoning
https://github.com/tigerseclab/VehicleSec25_LLM_Reasoning


Level 3 and higher AVs — to analyze driving environments.
This forensic capability is particularly crucial in the con-
text of regulatory compliance, as highlighted in ISO/SAE
21434, as well as UN Regulations No. 155 and 157 (UN
R155/157) [1, 21, 41], which emphasize the need for the gen-
eration and preservation of security logs, anomaly detection,
and analysis of cyber incidents post-attack.

This WIP paper makes the following contributions:
• We introduce a zero-shot CoT LLM-based semantic rea-

soning approach that enables pre-trained LLMs to an-
alyze structured adversarial and benign driving scenar-
ios using guidelines of the Manual on Uniform Traffic
Control Devices (MUTCD) [12] and identify anomalies
without relying on labeled training examples.

• We introduce a semantically rich dataset called
AutoSec-X (Autonomous Vehicle Security & Ex-
planation Dataset) , which currently contains 40 scenar-
ios in total, split evenly between benign and anomalous
cases. Each scenario is based on established rules and
regulations to reflect real-world driving conditions accu-
rately. This preliminary dataset will be extended more
systematically with additional scenarios in the future.

• We propose a robust evaluation strategy that quanti-
tatively and qualitatively compares the reasoning pro-
cesses of different LLMs, enabling an assessment of their
effectiveness in identifying, explaining, and contextual-
izing anomalies within vehicle systems. We employ both
traditional n-gram-based metrics, such as ROUGE [23]
and BLEU [32], as well as semantic similarity measures
like SBERT [35]. Our results indicate that while smaller
models can detect anomalies in many cases, larger mod-
els demonstrate a deeper semantic understanding and
more consistent domain-specific reasoning, as reflected
by higher SBERT and BERTScore values.

Unlike approaches such as ScenicNL [10] and Chat-
Scene [19], which focus on generating scenarios from nat-
ural language or enabling conversation with 3D scenes, our
framework generates and analyzes benign and threat scenarios
based on MUTCD rules. This approach provides significant
advantages over human analysis, such as the reduction of cog-
nitive biases that human investigators might introduce and
scaling analysis to thousands of incidents. This paper pays
equal attention to dataset generation and reasoning method-
ologies to establish a foundation for semantic understanding
of anomalies in AV environments. While our current work
evaluates LLMs on structured scenario descriptions rather
than real-time vehicle data, it lays essential groundwork for
future applications with actual AV log files.

2 Related Work

Our work introduces a zero-shot CoT LLM-based seman-
tic reasoning method that enables pre-trained LLMs to ana-
lyze structured driving scenarios. Therefore, in this section,

we review related work on LLM-based anomaly detection,
semantic reasoning, and AV safety. In the context of LLM-
based anomaly detection, Alnegheimish et al. [4] introduce
SIGLLM, a framework that detects deviations between pre-
dicted and observed signals. Li et al. [22] introduce FADE, a
few-shot/zero-shot anomaly detection engine that adapts the
vision-language CLIP model for industrial inspections.

Elhafsi et al. [9] propose a framework that leverages LLMs
for semantic anomaly detection in robotic systems. Nazat et
al. [5] propose XAI-ADS, a framework that interprets clas-
sifications made by AI models in vehicular ad hoc networks.
Song et al. [38] introduce Hudson, an attack-aware LLM-
based reasoning agent designed to detect and mitigate per-
ception attacks targeting object detection and tracking (ODT)
functions. Fernandez et al. [13] evaluate Vision-Language
Models (VLMs) for autonomous vehicle crash prevention by
comparing decision-making capabilities of human drivers and
existing AV. Aldeen et al. [2, 3] investigate the application
of Large Multimodal Models (LMMs) to defend against an
adversarial attack on AVs, which targets traffic signs.

3 Threat Model

Attacker Capabilities and Access. We consider an attacker
capable of physically manipulating traffic signs, lane mark-
ings, or road geometry to mislead the vehicle’s perception
system. This includes modifying existing signs (e.g., using
stickers or paint), installing deceptive signs, or altering lane
boundaries and road features. The attacker has sufficient ac-
cess to modify these elements in real-world conditions, ensur-
ing that the changes appear legitimate to human drivers while
exploiting the AV’s reliance on real-time visual perception.

Victim Vehicle and System Architecture. The victim ve-
hicle operates at SAE Level 1 or 2 autonomy, relying on cam-
eras and sensors rather than high-definition maps for real-time
validation. It logs structured sensor data, including detected
traffic signs, lane markings, road geometry, speed, and time of
day. The data is first streamed to a remote backend. This data
is converted into a Domain-Specific Language (DSL) file and
stored for offline forensic analysis. During the offline forensic
phase, an LLM-based analysis tool processes these DSL files
to identify inconsistencies, such as contradictory speed limits,
misplaced or modified traffic signs, or unexpected lane config-
urations. If an adversarial modification is detected, the system
logs the affected locations and extracts manipulated elements.
These findings can then be used to improve AV perception
models, such as incorporating adversarial training to make
the model more resilient to similar attacks in the future.
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Figure 1: Zero-shot LLM-based semantic reasoning framework: the framework showcases the process from MUTCD-based
scenario generation using GPT-o1 to LLM reasoning analysis on DSL representations, followed by evaluation using various
metrics (ROUGE-N, BLEU and SBERT) against manually reviewed ground truth.

4 Methodology

4.1 Dataset Generation
To compile the dataset AutoSec-X , we use guidelines from
the Manual on Uniform Traffic Control Devices (MUTCD),
a standard issued by the Federal Highway Administration
(FHWA) in the United States. The MUTCD defines the speci-
fications, standards, and best practices for traffic control de-
vices, such as speed limits, right-of-way rules, stop signs, and
highway signage. By grounding each scenario according to
these established rules and regulations, we ensure that our
scenarios accurately reflect real-world driving conditions.

As illustrated in Figure 1, a total of 12 sections from
the MUTCD were used to generate the scenarios in
the AutoSec-X dataset (see Table 2 in Appendix A for
details). These sections were selected because they address
some of the most common traffic signs and traffic control de-
vices in the US [8]. We generated 40 scenarios: 20 adversarial
scenarios (A1-A20) that violate the MUTCD sections and 20
benign scenarios (B1-B20) that fully comply with them.

I’m providing a list of sections from the Manual on Uniform Traffic
Control Devices (MUTCD). Your task is to generate driving scenarios
based on these sections. Make sure each scenario includes at least
the following information: RoadType, VehicleSpeed,
LaneMarkings, TrafficSigns, TrafficControlDevices,
TimeOfDay, ScenarioDescription, Weather.

The scenarioDescription should not mention correctness or
inconsistencies, it shouldn’t insinuate that there is an anomaly
or inconsistency. It should only describe the scenario.

MUTCD Sections: ... [See Appendix A]

Listing 1: Prompt used to generate scenarios.

To avoid potential bias introduced by manually creating sce-
narios, we employed the GPT-o1 model [30] to generate them.
We chose the o1 model for its state-of-the-art performance in
natural language understanding and its robust zero-shot gener-
ation capabilities. The prompt used to generate the scenarios
is provided in Listing 1. This prompt was crafted to ensure
that all generated scenarios contain all necessary details while
avoiding any commentary on regulatory correctness, therefore
maintaining an objective description of the scenarios. To en-
sure realism, each scenario was manually reviewed, verifying

that no unlikely situations were included in the final dataset.
{

"RoadType": "Highway",
"VehicleSpeed": "65 mph",
"LaneMarkings": "Dashed white",
"TrafficSigns": ["Stop"],
"TrafficControlDevices": [],
"TimeOfDay": "Daytime",
"Weather": "Sunny",
"Description": "A car traveling at 65 mph on a highway

encounters a stop sign."
}

Listing 2: Domain-Specific Language (DSL) for A1 scenario.

Although we used an LLM to create the scenarios, our
evaluation relies on entirely different LLM architectures
(LLaMA [25], Gemini [16], and Qwen [34]). By using dif-
ferent models for generation and evaluation, we reduce the
risk of nepotism bias [31], where similar model architectures
might unfairly influence evaluation results, and ensure that
the scenarios can be objectively evaluated. In future work, we
will systematically generate a more diverse set of scenarios.

4.2 Scenario Analysis
As illustrated in Figure 1, each scenario was manually re-
viewed, and a corresponding ground truth was generated
based on the relevant MUTCD section and the scenario de-
scription. This expert-generated ground truth serves as a
benchmark to evaluate the model-generated responses, al-
lowing us to compare the human expert reasoning with the
LLM reasoning capabilities. As manually generated data can
be inherently subjective, in the final version of this work, we
plan to have multiple human reviewers independently pro-
duce ground truth annotations and measure their agreement
using metrics such as Cohen’s Kappa [24]. The overlap in
their annotations will then be used to finalize the ground
truth. We assess how closely aligned the LLMs’ explanations
are with expert rationales by using both lexical overlap met-
rics (ROUGE-N, BLEU) and semantic similarity measures
(SBERT). The results of this comparison are shown in Table 1.
This approach provides a qualitative comparison between a
human expert and LLM reasoning on identical scenarios.

Using a zero-shot approach, we query the pre-trained mod-
els shown in Table 3. We used a combination of both open-



source and proprietary models to represent a broad spectrum
of sizes and architectures. We used models from the Llama,
Gemini, and Qwen families. This range, spanning large-scale
models with over 70 billion parameters to smaller models
with around one billion parameters, was chosen to assess how
model size and architectural differences impact the ability to
detect and explain anomalies in driving scenarios.

Using the prompt shown in Listing 3, we asked the models
to identify anomalies and to clearly explain their reasons be-
hind each decision. To encourage transparent reasoning, we
employed chain-of-thought prompting, which has been shown
to elicit more interpretable logical reasoning from LLMs [42].
For each generated scenario, key elements that define the
domain-specific language (DSL) were identified. Listing 2
shows the DSL for scenario A1. In addition to enabling sys-
tematic comparison and analysis, the DSL provides a way to
compile sensor data from the AV and present it to the LLMs.
In future work, we plan to leverage the data recorded by the
vehicle to recreate a driving scenario using the DSL.

You are an AI driving analysis tool. Your primary function is to
assess whether a given driving scenario is consistent or exhibits
signs of an adversarial attack (e.g., tampered traffic signs).
You have expert knowledge of traffic regulations, road signage,
and common driving practices.
Given a driving scenario in JSON format, your goal is to:

1. Determine if there is any inconsistency in the scenario.
2. Provide a clear and concise explanation of your
reasoning, identifying which specific part of the
scenario is inconsistent and referencing relevant
traffic rules or logical deductions.

Use the following exact response format. Fill in the
placeholders appropriately:

Inconsistency Detected: [Yes/No]
Reasoning: [Provide a thorough and concise explanation.
Keep it to 3-5 sentences and ensure it demonstrates
your reasoning.]

Follow a step-by-step reasoning process internally but only
provide the final output in the specified format.

Listing 3: Prompt used to evaluate scenarios.

5 Experimental Evaluation

In this section, evaluate the models’ performance and rea-
soning capabilities. First, in Section 5.1, we introduce the
evaluation metrics used in this study. Next, in Section 5.2,
we focus on anomaly detection accuracy. Section 5.3 com-
pares the model-generated explanations with the manually
curated ground truth. Next, in Section 5.4, we explore the
similarity between generated outputs. Finally, in Section 5.5,
we manually evaluate the LLMs reasoning output. 2

5.1 Evaluation Metrics

We use both traditional n-gram-based metrics and modern
semantic similarity measures. ROUGE [23] and BLEU [32]

2All experiments were conducted using an Intel 13th Gen Core i9-
13900KF CPU with 32 cores and 64GB of RAM, along with 4 NVIDIA
H100 GPUs.

assess textual overlap, while SBERT Semantic Similarity cap-
tures deeper contextual and conceptual alignment between the
generated output and the reference explanations. Although
ROUGE-N and BLEU metrics focus on surface-level lexical
overlap, we include them because they are still helpful in iden-
tifying extreme failure cases; near-zero scores may suggest
that the model has produced off-topic or irrelevant content.

Accuracy: Measures the overall correctness of the model’s
predictions by calculating the ratio of correct predictions to
the total number of predictions.

ROUGE-N: Measures overlap of n-grams between ground
truth and generated text, focusing on how much the reference
text is successfully captured by the generated text. We used
ROUGE-1, ROUGE-2, and ROUGE-L.

BLEU: Measures the precision of the n-gram overlap, that
is, how much of the generated text matches the ground truth.

Semantic Sentence Similarity (SBERT): Uses contextual
embeddings to quantify how semantically similar two texts
are, going beyond mere keyword matching. This metric is
dependent on the robustness of the embedding model; domain-
specific language may reduce accuracy.

5.2 Anomaly Detection Accuracy
First, we evaluate the model’s detection accuracy, as shown
in Table 1. Gemini models outperform both Qwen and
LLaMA models across all size categories. Among small
models, Gemini-1.5-flash achieves the highest accuracy,
with 92.5% among the scenarios in the AutoSec-X dataset.
For medium and large models, performance remains consis-
tent across architectures, indicating model size increases do
not improve performance. We can see that Gemini-1.5-Pro
performs similarly to mid-sized models and worse than the
smaller Gemini-1.5-flash, showing no accuracy gains from
the increased size. The most challenging scenario for the
smaller models was A12, which featured a "U-Turn Only"
sign on a narrow residential street corner. The models appear
to focus on the "U-Turn" text without inferring the spatial or
safety considerations established in the MUTCD guidelines.

5.3 Quantitative Reasoning Metrics
The metrics presented in Table 1 directly compare each
LLM’s reasoning output against the human expert-generated
ground truth explanations. For each scenario in AutoSec-X ,
a human expert manually analyzed the scenario and created
reference explanations that identify and justify regulatory
compliance or violations. These human-created reference ex-
planations serve as our ground truth. The ROUGE-N, BLEU,
and SBERT scores in Table 1 measure how closely the LLM-
generated explanations align with these human expert refer-
ence explanations. Higher scores indicate greater similarity
between the LLM reasoning and the human expert reasoning.
We observed that across our scenarios, the ROUGE-N scores



Table 1: Average Results Across Scenarios Per Model with Model Size Classification

Model Size Model Accuracy SBERT ROUGE-1 ROUGE-2 ROUGE-L BLEU

Small

Gemini-1.5-flash-8b 0.875 0.6707 0.3088 0.1000 0.2159 0.0028

Gemini-2.0-flash-exp 0.875 0.6771 0.3198 0.1112 0.2351 0.0030

LLaMA-3.2-1B-Instruct 0.550 0.6180 0.2156 0.0620 0.1480 0.0015

LLaMA-3.2-3B-Instruct 0.500 0.5300 0.1795 0.0534 0.1244 0.0021

Medium

Qwen2.5-14B-Instruct-1M 0.825 0.2807 0.1446 0.0446 0.0917 0.0006

Qwen2.5-7B-Instruct-1M 0.825 0.2807 0.1505 0.0478 0.0941 0.0007

LLaMA-3.2-8B-Instruct 0.825 0.4771 0.1424 0.0454 0.0995 0.0008

Gemini-1.5-flash 0.925 0.6802 0.3420 0.1178 0.2485 0.0033

Large Gemini-1.5-pro 0.875 0.6915 0.3307 0.1190 0.2454 0.0030

are higher than the BLEU scores. This suggests that while
the models capture some overlap or generate some key words
that are also present in the ground truth, none of the produced
outputs closely matches the wording of the ground truth.

Although both the ROUGE and the BLEU scores are low
across the board, none reach zero. Even the lowest-performing
models, such as LLaMA-3.2-3B-Instruct (BLEU 0.0021,
ROUGE-1 0.1795), maintain non-zero scores, indicating that
no model is generating completely off-topic responses.

While ROUGE and BLEU metrics show minimal gains
with alrger models, SBERT demonstrates clearer improve-
ment in semantic similarity, especially in the Gemini fam-
ily. Rising SBERT scores across model sizes, peaking at
0.6915 with Gemini-1.5-pro, suggest these models aren’t
just matching reference text superficially but preserving core
meaning. This indicates that while lexical alignment may
plateau across similar architectures, semantic alignment con-
tinues improving with larger models.

5.4 Consistency Analysis

To compare the output of the models, we used both n-
gram based metrics and SBERT. Figure 2 shows BLEU
and SBERT Scores. The n-gram metrics reveal strong cor-
relations among the Gemini models. This indicates that
these models generate highly similar outputs, suggesting
consistency in their semantic understanding across differ-
ent scales. In contrast, the smaller LLaMA-3.2-1B-Instruct,
LLaMA-3.2-3B-Instruct and Qwen2.5-7B-Instruct-1M
models exhibit weaker correlations, especially when com-
pared with larger models. This shows larger models’ more
advanced semantic representation capabilities, which generate
outputs that align more closely with each other.

The SBERT correlation matrix reveals a clear link be-
tween model size and semantic alignment. Smaller mod-
els like LLaMA-3.2-1B-Instruct show weak or even
negative correlations with both larger models and each
other, indicating limited semantic overlap. In contrast,

mid-sized models, such as Qwen2.5-7B-Instruct-1M and
Qwen2.5-14B-Instruct-1M, display stronger similarities,
with a correlation of 0.38 between them, and better align-
ment with bigger models. Overall, these results suggest that
as model size grows, so does the capacity to produce more
coherent and semantically consistent outputs.

5.5 Qualitative Reasoning Evaluation

To complement our quantitative metrics, we conducted a de-
tailed manual evaluation of each LLM’s reasoning capabilities.
For this evaluation, human experts reviewed the output gen-
erated by each model in all scenarios, assessing the quality,
coherence, and domain-specific relevance of their reasoning.
Our manual review reveals that Gemini models consistently
output clear, structured, and scenario-relevant reasoning that
closely matches the ground truth. In contrast, the LLaMA
models exhibited more variability in their output. For example,
LLaMA-3.2-8B-Instruct produced less coherent reasoning,
with incomplete outputs or deviating from the expected for-
mat. Listing 4 shows the output of the A5 scenario evaluation.

‘‘‘python def analyze_driving_scenario(scenario): # Inconsistency
check if scenario[’Road Type’] == ’Multi-Lane Arterial Road’ and

scenario[’Speed’] == ’50 mph’: if ’Left Turn Only’ in
scenario[’Traffic Signs’]:if ’Broken white lines with

designated left-turn lane markings’ in scenario[’Lane Markings’]:
return "Inconsistency Detected: Yes Reasoning...

Listing 4: LLaMA output for A5 scenario.

Beyond a specific MUTCD reference, the models also vary
in how they account for environmental cues and time-of-day
information. In higher performing instances, an LLM might
note that a flashing school zone beacon is inactive during
purported school hours, thereby identifying a subtle but essen-
tial inconsistency in signage or regulation. Meanwhile, less
capable models sometimes overlook this contextual mismatch
and rely on simpler thresholds for classification.
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Figure 2: Correlation matrices of model outputs using (a) BLEU and (b) SBERT scores. Higher correlations are observed among
larger models, indicating greater consistency in their outputs.

Overall, the results suggest that while most models
detect anomalies effectively, larger models like Gemini
1.5-Pro demonstrate deeper reasoning, often drawing on
specific MUTCD sections to justify their decisons. For in-
stance, Gemini 1.5-Pro explicitly references how a "Stop"
sign on a high-speed highway could violate stop sign place-
ment guidelines.

6 Future Work

Currently, this paper focuses equally on the generation of
datasets and the reasoning behind LLMs decision making.
In the future, we plan to focus primarily on the reasoning
component with more sophisticated analysis techniques, and
using the LLMs reasoning to trace inconsistencies to specific
components of the AV perception system.

Another area of future work involves expanding our dataset.
Currently, each AutoSec-X senario is based on a MUTCD
rule, ensuring real-world regulatory compliance. To increase
the realism of the scenarios, we plan to incorporate scenar-
ios from open source datasets such as nuScenes [7], Waymo
Open Dataset [40], and KITTI [15] using our DSL. We plan
to incorporate Scenic [14], a probabilistic programming lan-
guage designed for scenario specification and generation in
autonomous systems, and approaches such as ScenicNL to
generate scenarios in a more systematic way by transforming
our MUTCD-based descriptions into formal representations.
Finally, we will try to include real-world log files from actual
AV deployments, which will help us to provide examples of
both normal operations and anomalous conditions, creating a
more robust environment. Additionally, we could adapt our
work to large multimodal language models.

7 Conclusion

This study shows that LLMs enhance adversarial scenario
analysis in AVs by providing interpretable anomaly ex-
planations, effectively distinguishing adversarial manipula-
tions. Key findings indicate that Gemini models, particularly
Gemini-1.5-Pro, achieved the highest accuracy in anomaly
detection and explanation based on automotive regulations,
showcasing the potential of LLMs in improving anomaly
interpretation within AV systems. The evaluation using the
AutoSec-X dataset demonstrated that while smaller models
can detect anomalies, larger models exhibit deeper semantic
understanding and more consistent domain-specific reasoning,
often referencing MUTCD sections to justify their conclu-
sions. The study suggests that this LLM-based approach holds
promise for improving anomaly interpretation and aiding anal-
ysis of driving incidents. Future works include expanding the
AutoSec-X dataset, incorporating the Scenic programming
language for scenario generation, and exploring multimodal
extensions to further enhance AV security.
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A Manual on Uniform Traffic Control Devices (MUTCD)

Table 2: MUTCD Sections used to generate scenarios.

MUTCD Section Title Description

2B.04 Regulatory Sign Requirements Outlines the general requirements for regulatory signs, including their design, place-
ment, and application to ensure consistency and clarity in traffic control.

2B.05 Stop Sign Placement Specifies appropriate locations for stop signs, emphasizing that they should be installed
at intersections, ramps, or designated access points rather than within main travel lanes
of highways.

2B.06 Placement of Regulatory Signs Details the guidelines for the placement of various regulatory signs to ensure they are
positioned in locations that are logical and safe for drivers, avoiding misleading or
inappropriate installations.

2B.13 School Speed Limit Signs Defines the standards for school speed limit signs, including the use of supplemental
plaques to indicate specific times when reduced speed limits are in effect.

2B.33 U-Turn Regulations / Roundabout Stan-
dards

Covers regulations pertaining to U-turns, including where they are permitted, as well
as standards for roundabout design to facilitate safe and efficient traffic flow.

2B.04 Speed Limit Sign Requirements (Note: This appears to be a repetition and may refer to another specific subsection
related to speed limits) Outlines the requirements for speed limit signs, ensuring they
reflect appropriate speed regulations based on road conditions and geometry.

4L.03 Flashing Beacons Defines the operational standards for flashing beacons, including their use in con-
junction with regulatory signs to enhance visibility and convey specific traffic control
instructions.

7B.15 Speed Limit Sign Applications in School
Zones

Provides detailed guidelines on the application and timing of speed limit signs within
school zones, ensuring that reduced speed limits are effectively communicated during
designated times.

R2-12 Speed Control for Road Conditions Addresses how speed limits should be adjusted based on varying road conditions to
ensure safety and optimal traffic flow.

R4-02 Speed Control Signs Specifies the standards for speed control signage, including their design, placement,
and the circumstances under which they should be used.

R4-03 Appropriate Signage for Roundabouts Details the types of signage suitable for roundabouts, ensuring that signs support the
intended traffic movement and safety within these traffic structures.

R4-10 Lane Use Control Signs Outlines the regulations for signs that control lane usage, such as mandatory turn lanes
or lane-specific directions, ensuring they are placed in appropriate locations to guide
driver behavior.



B AutoSec-X

Table 3: AutoSec-X (Autonomous Vehicle Security & Explanation Dataset) :The Code, Name and Complexity columns
were manually annotated, while the Description, MUTCD Section and Other Information columns were extracted from the
scenarios generated by GPT-o1.

Code Name Description MUTCD Section Other Information

A1 Highway Stop Sign
A car traveling at 65 mph on a highway

encounters a stop sign placed on the shoulder. 2B.04, 2B.05 Highway; 65 mph; Sunny; Daytime

A2 Urban Roundabout U-Turn Sign
A roundabout features a sign

permitting U-turns at the entry. 2B.33 Urban Roundabout; 30 mph; Light Rain; Evening

A3 Urban Main Road U-Turn
A driver on an urban main road

encounters a “U-Turn Only” sign mid-lane. 2B.33, 2B.06 Urban Main Road; 40 mph; Overcast; Afternoon

A4 Multi-Lane Arterial Left Turn
A driver in a through lane unexpectedly

sees a “Left Turn Only” sign. 2B.06 Multi-Lane Arterial; 50 mph; Partly Cloudy; Late Afternoon

A5 Controlled Intersection Wrong Way
At an urban intersection, a “Wrong Way” sign

appears despite proper direction. 2B.04, 2B.06 Controlled Intersection; 30 mph; Clear; Noon

A6 One-Way Pedestrian Speed Limit
A 40 mph speed limit sign is seen
on a street meant for pedestrians. 2B.04, R2-12 Pedestrian Street; 10 mph; Clear; Daytime

A7 Multi-Lane Roundabout No Left Turn
A “No Left Turn” sign is observed

at the exit of a roundabout. 2B.33, R4-03 Roundabout; 20 mph; Sunny; Afternoon

A8 Expressway Pedestrian Crossing
An unexpected pedestrian crossing sign

is installed on an expressway. 2B.04, 2B.06 Expressway; 70 mph; Clear; Nighttime

A9 Traffic Circle Yield
A yield sign is posted along

the exit of a traffic circle. 2B.04, 2B.05 Traffic Circle Exit; 40 mph; Misty; Early Morning

A10 Urban One-Way Wrong Way
A “Wrong Way” sign is encountered

on a one-way street. 2B.04, 2B.06 One-Way Street; 25 mph; Cloudy; Daytime

A11 Roundabout Speed Limit
A 55 mph speed limit sign is mounted

near a roundabout entry. 2B.33, R4-02 Roundabout; 20 mph; Sunny; Daytime

A12 Narrow Residential U-Turn
A “U-Turn Only” sign is seen at a corner

on a narrow street. 2B.33, 2B.06 Residential; 25 mph; Overcast; Daytime

A13 Two-Way School Zone
At night, a school zone sign appears

with a non-flashing beacon. 2B.13, 7B.15, 4L.03 Two-Way Street; 35 mph; Clear; Nighttime

A14 Two-Way Wrong Way
A “Wrong Way” sign is mounted on

a roadside post along a two-way street. 2B.04, 2B.06 Two-Way Street; 40 mph; Sunny; Daytime

A15 Rural Contradictory Passing Signs
Both “No Passing Zone” and “Passing Allowed”

signs are posted close together. 2B.04, 2B.06 Rural Road; 55 mph; Sunny; Daytime

A16 Winding Road High Speed
A 65 mph speed limit sign and a

“Winding Road Ahead” warning appear together. 2B.04, R2-12 Winding Road; 40 mph; Overcast; Daytime

A17 Highway Left Lane Turn
An overhead sign indicates that

the left lane is reserved for turning. R4-10 Highway; 65 mph; Clear; Daytime

A18 Residential Speed Limit Discrepancy
A 55 mph speed limit sign appears

on a quiet residential street. R4-02 Residential; 30 mph; Clear; Evening

A19 Mountain Road High Speed
A 70 mph speed limit sign is observed

on a foggy, winding mountain road. R2-12 Mountain Road; 40 mph; Foggy; Daytime

A20 School Zone Beacon Inactive
A school zone sign indicates enforcement only

when the beacon flashes, but it is off. 4L-03 School Zone; 25 mph; Cloudy; Daytime

B1 Highway Exit Sign
A car on a highway observes an
exit sign for an upcoming exit. 2B.04 Highway; 65 mph; Sunny; Daytime

B2 Highway Keep Right Sign
A “Keep Right” guide sign directs
proper lane usage on a highway. 2B.04 Highway; 65 mph; Sunny; Daytime

B3 No U-Turn on Single-Lane Highway
A “No U-Turn” sign is seen at an intersection

on a single-lane highway. 2B.33, 2B.06 Single-Lane Highway; 35 mph; Sunny; Daytime

B4 Appropriate Speed Limit in Roundabout
A 25 mph speed limit sign is

posted at a roundabout. 2B.33, R4-02 Single-Lane Roundabout; 15 mph; Sunny; Daytime

B5 Roundabout Yield Sign
A yield sign instructs drivers to yield
to circulating traffic in a roundabout. 2B.33, R4-03 Roundabout; 25 mph; Sunny; Daytime

B6 No Passing on Divided Highway
A “No Passing Zone” sign reinforces lane

markings on a divided highway. 2B.05, 2B.06 Divided Highway; 65 mph; Sunny; Daytime

B7 Designated Left Turn Exit
A sign indicates that the left lane

on a highway leads to an exit ramp. R4-10 Divided Single-Lane Highway; 65 mph (main), 25 mph (ramp); Sunny; Daytime

B8 Winding Road with Appropriate Speed
A speed limit sign on a winding road

matches the road’s geometry. 2B.04, R2-12 Winding Road; 35 mph; Sunny; Daytime

B9 Yield Sign at Highway Merge
A yield sign is posted at a
highway merging point. 2B.04, 2B.05 Highway; 65 mph; Sunny; Daytime

B10 Directional Arrow on One-Way Street
A directional arrow sign at the entrance

reinforces one-way traffic. 2B.04, 2B.06 One-Way Street; 30 mph; Cloudy; Daytime

B11 School Zone Speed Limit During School Hours
A school zone sign with a times-of-day

plaque is encountered during school hours. 2B.13, 7B.15 Two-Way Street; 20 mph; Cloudy; Daytime (school hours)

B12 School Zone with Flashing Lights
A school zone sign is paired with

functioning flashing lights. 2B.13, 4L-03 Two-Way Street; 30 mph; Cloudy; Daytime (school hours)

B13 Urban Multi-Lane Road Left Turn
A left-turn sign at an intersection

on a multi-lane road directs drivers appropriately. R4-10 Urban Multi-Lane Road; 35 mph; Clear; Morning

B14 Suburban Boulevard Right Turn
A sign on a suburban boulevard

mandates right lane turns at an intersection. R4-10 Suburban Boulevard; 40 mph; Sunny; Afternoon

B15 Single-Lane Roundabout Directional Arrow
Arrow signs mark the circular direction

at a single-lane roundabout. R4-03 Single-Lane Roundabout; 20 mph; Partly Cloudy; Midday

B16 Suburban Residential Speed Limit
A 25 mph speed limit is posted
on a suburban residential street. R4-02 Residential Street; 25 mph; Cloudy; Mid-Morning

B17 Urban Intersection Stop Sign
A stop sign, enhanced with a flashing beacon,

controls an urban intersection. 4L-03 Urban Intersection; 30 mph; Light Rain; Evening

B18 Two-Lane Residential School Zone
A school zone sign with a flashing beacon

appears on a two-lane residential road. 7B.15 Two-Lane Residential; 25 mph; Clear; Morning

B19 Rural Two-Lane Road School Zone
A rural road near a school displays

a 30 mph school zone sign when a beacon flashes. 2B.13 Rural Two-Lane; 45 mph; Partly Cloudy; Morning

B20 Suburban Two-Lane Road Speed Limit
A suburban road with gentle curves

shows a 35 mph speed limit. R2-12 Suburban Two-Lane; 35 mph; Partly Cloudy; Afternoon
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