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Abstract—As the advent of autonomous vehicle (AV) technol-
ogy revolutionizes transportation, it simultaneously introduces
new vulnerabilities to cyber-attacks, posing significant challenges
to vehicle safety and security. The complexity of these systems,
coupled with their increasing reliance on advanced computer
vision and machine learning algorithms, makes them susceptible
to sophisticated AV attacks. This papelﬂ explores the potential
of Large Multimodal Models (LMMs) in identifying Natural De-
noising Diffusion (NDD) attacks on traffic signs. Our comparative
analysis show the superior performance of LMMs in detecting
NDD samples with an average accuracy of 82.52% across the
selected models compared to 37.75% for state-of-the-art deep
learning models. We further discuss the integration of LMMs
within the resource-constrained computational environments to
mimic typical autonomous vehicles and assess their practicality
through latency benchmarks. Results show substantial superior-
ity of GPT models in achieving lower latency, down to 4.5 seconds
per image for both computation time and network latency (RTT),
suggesting a viable path towards real-world deployability. Lastly,
we extend our analysis to LMMs’ applicability against a wider
spectrum of AV attacks, particularly focusing on the Automated
Lane Centering systems, emphasizing the potential of LMMs to
enhance vehicular cybersecurity.

I. INTRODUCTION

In the past few years, autonomous vehicle (AV) systems
witnessed great success of deep neural networks (DNNs) in a
variety of computer vision tasks, such as image classification,
object detection, etc. These advanced models have become
increasingly robust against a multitude of AV attacks. For
instance, techniques that use shadows [1]] or stickers [2] to
deceive traffic sign detection systems in autonomous vehicles
have been effectively countered by the enhanced capabilities
of DNNs [3]]. The evolution of DNNs has improved traffic
sign recognition accuracy, significantly boosting autonomous
vehicles’ safety and efficiency.

However, with the advancement of diffusion models in
image generation, they reveal new vulnerabilities that could
be a challenge for the robust detection capabilities of the
existing DNN models [4]]. For example, innovations, such as
OpenAlI’'s DALL-E [5], Adobe Firefly [6], Google Imagen [[7]],
and the VQ-GAN + CLIP [8] combination have redefined
image generation, seamlessly converting text descriptions into
detailed, photorealistic images. Images from these models pose
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Adversarial Traffic Sign

Fig. 1. The victim’s car is approaching a pole in front of the attacker’s store
with an adversarial traffic sign depicting the word 'HI!’. In our experiments,
this sign has been classified as a stop sign by ResNeXt with a confidence
score of 95%.

a threat to AV systems, especially with Natural Denoising
Diffusion (NDD) attacks [9]], a new cybersecurity challenge
for AVs.

Attackers can use diffusion models to create images that,
while not actual traffic signs, deceive AV perception systems’
DNNs into recognizing them as real traffic signs. Since it
is illegal to use, alter, or replicate official traffic signs [10],
attackers can use NDD attacks to manipulate AV behavior
without legal risks associated with physically tampering or
using authentic road signs. An attacker could generate a
fake Stop sign, visually distinct yet recognized by an AV’s
perception system, avoiding law enforcement attention but
potentially causing the AV to stop unexpectedly, leading to
confusion or accidents.

The advent of Large Language Models (LLMs) [[11] marks
a significant milestone in Artificial Intelligence and Large
Multimodal Models (LMMs) [12] expand the capabilities of
LLMs by incorporating visual signals. LMMs excel not only
in handling and generating substantial textual-only tasks, but
also demonstrate impressive performance in various multi-
modal tasks, such as video recommendations [13]] and image
understanding [[14], amongst others. This paper presents an in-
depth analysis of the robustness of LMMs against NDD attacks
and their integration into AV systems. Given the success of
generative pretraining in vision-language modeling, we use
combined visual and textual data such as multimodal GPT-
4V [15] and LLaVA [16]. This paper further discusses how the
use of instruction tuning in LMMs was key in identifying NDD
attack sample images. In summary, we make the following
contributions:

e We conduct comprehensive evaluation of large multi-
modal models (LMMs) in identifying traffic signs com-



promised by NDD attacks. Our findings show that LMMs,
such as GPT-4V and Google Bard showed accuracies of
84.06% and 85.42% respectively, outperforming state-of-
the-arts models such as ResNeXt and MobileNet, which
had much lower accuracies (below 18.67%). m

o We integrate LMMs into constrained computing envi-
ronments, which are common in AVs, to demonstrate
their potential feasibility in real-world scenarios. Our
results illustrate that the latency was significantly high
when these models were run locally. Conversely, server-
run models like GPT-4V reduced latency to about 4.5
seconds, enhancing their practicality in AV systems.

II. THREAT MODEL

An attacker can get the same Traffic Sign Recognition
(TSR) module as in the victim’s vehicle to comprehend its
implementation fully. This can involve buying or leasing the
same car model as the victim’s and then reverse engineering
it, a method proven feasible with Tesla’s Autopilot [17]. Ad-
ditionally, it’s worth noting that some TSR module algorithms
used in production are open-source [18]. Using the white-
box knowledge, the attacker creates and places an adversarial
traffic sign with the text "HI!” on a pole across from their
store, as illustrated in Figure m The victim’s vehicle which is
headed towards the store will recognize the fake traffic sign
as a stop sign and come to a halt.

The goal of the adversary is to minimize the obviousness of
the generated traffic sign to increase stealthiness. To achieve
this, context-aware adversarial example generation is recom-
mended. For instance, the adversary might want to install an
adversarial traffic sign resembling the image of a vegetable
near a grocery store. We assume the attacker exclusively
targets the Traffic Sign Recognition (TSR) module using Al-
generated signs, without considering patches or alternative
threats.

III. DATASETS AND MODELS
A. Dataset

To systematically assess the effectiveness of LMMs in
identifying these NDD samples as adversarial, we first use
the Adobe Firefly diffusion model [6] to generate a small-
scale dataset containing NDD adversarial examples. We used
text prompts aimed to disrupt the fundamental properties that
humans typically use to identify these signs. For example, we
focused on altering the most important visuals of traffic signs,
changing their shape, texture, and color. These elements are
crucial for how objects are typically recognized, as emphasized
in existing research [[19]. To generate a diverse set of samples,
we created combinations such as altering both shape and text,
shape and pattern, alongside other combinations, as depicted in
Table [I Subsequently, two of the authors filtered the dataset
manually to ensure that the generated images do not reflect
actual traffic signs.

The implementations codes of this work and generated dataset are available
at https://anonymous.4open.science/r/LMM_on_AV-118E.

(a) No Entry (b) Priority Sign

Fig. 2. The Selected Traffic Signs

(c) Stop Sign (d) Yield Sign

The generated dataset features images of four common
traffic signs from the German Traffic Sign Recognition Bench-
mark (GTSRB) [20],namely no entry [2a| priority road [2b
stop sign and yield 40 variations were generated
from each of the 4 real signs, resulting in a total of 160 signs.
Each sign was changed in 4 features, resulting in 10 variations
for each feature. We validated the adversarial effectiveness
of our NDD dataset by testing with the ResNeXt model,
including only images predicted as traffic signs with over
80% confidence, to assess the risk of NDD attacks misleading
autonomous driving systems.

B. Models

To thoroughly evaluate the generated NDD dataset, we
employed a different set of models. Our selection includes
state-of-the-art models from conventional deep neural net-
works paradigms, such as pre-trained ResNeXt model that
had been trained on GTSRB dataset [21], and manually
trained MobileNet [22]], VGG16 [23], YOLOVS [24], serving
as a baseline for our comparisons. On the other hand, we
incorporated Large Multimodal Models (LMMs) such as GPT-
4V [[15)], LLaVA-7B, LLaVA-13B [16], as well as Google Bard
[25]. For the testing process, all LMMs were employed in their
pre-trained state without any further fine-tuning to assess their
out-of-the-box efficacy against the NDD dataset.

LMMs are notably computationally intensive and memory-
demanding, posing challenges in environments with limited
hardware, such as autonomous vehicles. Quantization [26]
emerges as a vital technique to reduce the precision of weight
values, thereby conserving memory and accelerating the infer-
ence process, all with minimal impact on the performance of
the model [27], as will be discussed in Section [V} Therefore,
we first convert the LLaVA models to a fp/6 binary format.
The focal point of our quantization process is reducing the
number of bits used to represent each weight in the model to
4-bits.

IV. TASK 1: NDD ATTACK DISCOVERY

A. Goal

In this task, LMMs are asked to discover if images in the
generated NDD dataset are related to actual traffic signs to
evaluate their practical applicability in real-world scenarios.
AVs, for example, use traffic sign recognition models as
part of their navigation systems. Through this comprehensive
evaluation, we aim to understand how different models react
to the NDD attack and assess the robustness of the LMMs
model against NDD attacks.
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TABLE I
A DETAILED BREAKDOWN OF HOW WE GENERATE THE NDD DATASET. WE ELIMINATE OR MODIFY SOME OR ALL OF THE FOUR FEATURES. THE
RESNEXT MODEL IS USED TO CALCULATE THE PREDICTED CLASS AND CONFIDENCE SCORE.

Features | Generated Sample | Predicted Class + Confidence

Combination Features

Generated Sample | Predicted Class + Confidence

Prediction: No Entry
Confidence: 99.7%

Shape

Shape & Text

Prediction: Stop Sign
Confidence: 98.9%

Prediction: No Entry
Confidence: 99.3%

Color

Shape & Pattern

Prediction: Stop Sign
Confidence: 99.9%

Text Prediction: Stop Sign
Confidence: 99.9%

Color & Pattern

Prediction: No Entry
Confidence: 93.44%

Prediction: Yield
Confidence: 95.5%

Pattern
tern

Shape & Text & Color & Pat-

Prediction: Yield
Confidence: 85.07%

TABLE 11
COMPARISON OF LLMS AND TRADITIONAL MODELS AGAINST NDD
ATTACK SAMPLES

Type Model Accuracy  F1-Score  Precision  Recall
GPT-4V 84.06% 86.73% 92.42% 84.06%

LLMs Bard 85.42% 85.94% 86.82% 85.42%
LLaVA-7B 79.80% 79.93% 80.88% 79.80%
LLaVA-13B 80.81% 83.48% 88.70% 80.81%
ResNeXt [21] 17.17% 6.34% 3.99% 17.17%

Traditional Models ~ MobileNet [22]  18.67% 22.41% 62.50% 15.01%
YOLOVS [24] 44.12% 43.57% 65.11% 38.22%
VGG16 [23 71.05% 66.56 % 71.10% 78.88%

B. Experimental setup

We formulate NDD attack discovery as a binary-class
classification task. Given an NDD sample image from the
dataset, we ask the LMM model via prompt whether the image
corresponds to actual traffic sign. Here is the prompt used in
this scenario: “QI: Is the traffic sign displayed a real-world
traffic sign that has the same shape, color, pattern and text as
real world traffic sign ? Answer with ’yes’ or ’'no’.”’. Then,
we enumerate the AE images in the dataset, systematically
presenting each to the LMMs for classification.

Similarly, we evaluate traditional traffic sign detection mod-
els, ResNeXt, MobileNet, YOLOvS, VGG16 in identifying
traffic signs within the NDD dataset. To thoroughly assess
each model’s performance, we not only obtained the inference
results from each image in the dataset but also focused on
acquiring the confidence scores of each classified image since
a high confidence score in classifying a NDD sample can
reveal the model’s susceptibility to such attacks. For instance,
if a model wrongfully classifies a non-actual traffic sign (from
our generated NDD dataset) as a legitimate traffic sign with
high confidence, it indicates a potential vulnerability in the
model’s detection capabilities.

C. Results

Table [lI] presents the overall detection results of all four
signs in the generated NDD dataset. Rather than measuring

the misclassified traffic sign class, the table evaluates if each
model identifies NDD signs as a legitimate traffic sign or not.
For example, the accuracy in Table [II| reflects the model’s
capability to identify samples in the NDD dataset as non-actual
traffic signs. We observe GPT and Bard to exhibit the highest
accuracy achieving 84.06% and 85.42%, respectively. LLaVA-
7B and LLaVa-13B also demonstrate noteworthy performance
with accuracies of 79.80% and 80.81%, respectively. While the
LLaVA models are effective in identifying NDD samples as
non-actual traffic signs, they are slightly outperformed by GPT
and Bard. On the other hand, traditional DNN models such
as ResNeXt and MobileNet and YOLOVS show significantly
lower accuracy in identifying NDD samples, with accuracies
of 17.17%, 18.85% and 44.12%, respectively. Nonetheless,
VGG16 emerges as an exception among traditional models,
achieving a noteworthy accuracy of 71.05% and the highest
F1-Score in its category, indicating a relatively better but still
not comparable performance to LMM:s.

This notable success in LLMs is largely due to the their
ability to handle complex visual patterns due to their extensive
training on diverse datasets. LMMs have an advanced under-
standing of context. This means they are better at interpreting
the broader meaning or implications of the data they process,
rather than just focusing on specific features. This capability
makes them more effective at identifying anomalies or irregu-
larities in data, which is crucial for detecting and responding
to attacks, where data might be intentionally altered to mislead
the model. On the contrary, traditional DNN models rely
heavily on visual cues or specific features in the data they
are trained on such as shape, color, and text. These models
have been optimized to identify these features with high
accuracy under normal conditions. In the case of NDD attacks,
these visual features are subtly manipulated so that traditional
models still continue to predict the presence of traffic signs
with high confidence. This overconfidence is likely due to
the altered signs still retaining enough of the original features
to trigger recognition by the model. The LLMs vary in false
positive rates, with Bard at 8.33%, LLama-7b at 10.10%, GPT



TABLE III
COMPARISON OF LMMS AND TRADITIONAL MODELS AGAINST
NON-AES
Type Model Accuracy F1-Score Precision Recall
GPT-4V 79.04% 84.79% 95.06% 79.04%
LLaVA-7B 73.00% 69.91% 80.92% 73.00%
LMMs
LLaVA-13B 70.00% 62.39% 59.66% 70.00%
ResNeXt [21] 99.50% 99.50% 99.51% 99.50%
Traditional Models ~ MobileNet [22]  93.50% 96.44% 99.99% 93.50%
YOLOVS [24] 54.80% 56.86% 94.67% 52.81%
VGGl16 [23] 99.00% 99.20% 99.22% 99.20%

at 14.49%, LLama-13b at 16.16%, and Resnex with the highest
rate at 82.83%.

Despite the strong performance of Google Bard, integrating
it was tough due to no official API. We used an unofficial API
[28], which worked but had limits, especially handling lots of
images. It couldn’t process batches over 30 images well, even
with delays. So, we only used this method for Task 1, leaving
Bard out of Table [[II] and in Task 2.

V. TASK 2: LMM INTEGRATION IN AUTONOMOUS
PERCEPTION

A. Goal

Building upon the insights gained from Task 1, where
LMMs demonstrated a notable proficiency in identifying the
images within our generated NDD dataset as non-actual traffic
signs, the goal of this task is to explore the feasibility of
integrating LMMs into the perception systems of autonomous
vehicles to enhance decision-making and environmental un-
derstanding. We examine how the integration of LMMs, with
their significant computational requirements, aligns with the
operational capabilities of AVs, aiming to strike an optimal
balance between enhanced cognitive processing and the com-
putational efficiency of onboard vehicle systems.

B. Method

In the first phase, we integrated ZED BOX [29], designed
for running sophisticated neural networks and processing
voluminous 3D sensor data in real-time, which is crucial
for the complex decision-making processes of autonomous
vehicles. One of the major tasks in perception systems is
object detection, which is essential for safe navigation without
collisions. To achieve this, we employ a stereo camera system,
the ZED X — an IP66-rated stereo camera powered by the
Neural Depth Engine 2, designed for next-generation robotics
and ideally suited for industrial environments. This camera
employs triangulation to construct a three-dimensional un-
derstanding of the scene, thereby significantly improving our
perception of space and motion within the test environment.

In the second phase, we utilize the Raspberry Pi as an
Electronic Control Unit (ECU) to simulate an autonomous ve-
hicle’s perception system, particularly focusing on its response
to NDD dataset. We chose the Raspberry Pi 4 Model B, which
features 8GB RAM and 64GB ROM, a Broadcom BCM2711,
Quad-core Cortex-A72 (ARM v8) 64-bit SoC running at

1.8GHz, due to its similar specifications to comparable au-
tonomous driving ECUs. For instance, while not as advanced
as the high-computing Tesla HW3 or HW4, the Raspberry
Pi 4’s processing capabilities and system architecture offer a
modest parallel to early versions of Tesla’s Autopilot hard-
ware, such as HW1. Specifically, Raspberry Pi 4 provide a
sufficient platform for handling tasks such as image recogni-
tion and processing sensor data, similar to the capabilities of
the Mobileye EyeQ3 chip in Tesla’s HW1 Moreover, it allows
us to create a controlled environment where LMMs can be
tested on their ability to process environmental data, including
images from the NDD dataset.

Traditional traffic sign detection models based on DNNs
have proven to be effective in accurately recognizing non-
adversarial traffic signs, as shown in Table Meanwhile,
LMMs demonstrate promising capabilities in identifying NDD
attack examples. Therefore, we deploy LMMs in our system
as a verification layer, and the workflow of this approach is
illustrated in Figure 3| This integration forms a comprehensive
perception system for street view analysis in AVs. Initially, a
traffic sign recognition model scans the street to locate and
identify traffic signs then models such as ResNeXt are utilized
to classify the specific type of traffic sign detected. When the
vehicle approaches within a proximity of 7 meters to the traffic
sign, LMMs are activated as a verification layer to confirm
whether the identified sign is non-adversarial. Based on the
outcome of the LMM verification, the system either warns the
driver if the sign is deemed adversarial or allows the vehicle
to continue driving if the sign is verified as legitimate.

To determine this operational range of 7 meters for LMM
activation, we conducted a series of tests at varying distances.
These tests were designed to identify the threshold distance at
which the LMMs reliably and accurately identified traffic signs
as adversarial or legitimate. We initiated our testing process
by capturing images (via ZED stereo camera) of traffic signs
from a close distance of 2 meters. LMMs were capable of
accurately identifying NDD signs in a short-range scenario.
Following that we tested at 5, 7, and finally 10 meters.
The accuracy of the LMMs in identifying NDD signs was
high up until 7 meters. However, beyond this threshold, it
dropped significantly, leading us to set 7 meters as the optimal
activation range for the LMMs verification layer. The observed
decrease in accuracy beyond the threshold can be related to the
limited capability of the camera to capture clear and detailed
images at longer distances, leading to a reduction in the quality
of data fed to the LMMs. The necessity for LMMs to receive
high-quality images for detection constrains the deployment
within AV systems, as it highlights the physical limitations of
current sensory hardware (i.e., camera and lidar).

Additionally, the nature of the signs being displayed on a
TV screen may have influenced the captured image quality.

This finding highlights the importance of considering both
the technological capabilities and the operational environment
in determining the effective range for LMM activation, ensur-
ing optimal threat detection and adequate response time for
the AV’s decision-making processes.
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Fig. 3. Workflow of the LLM as a Verification Layer in an Autonomous Vehicle’s Perception System.
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Fig. 4. Experimental Setup

C. Experimental setup

We connect the ZED BOX to the ZED X stereo camera
module through its GMSL2 port to capture real-time images
from the NDD dataset projected on a TV screen, providing
a dynamic and realistic testing environment as depicted in
Figure ] We deployed GPT-4V on it for testing the NDD
dataset. The captured images from the camera module are
directly fed into the GPT-4V model as we formulate NDD
attack identification with a binary classification prompt. The
prompt used in this scenario is: “Q2: Is the traffic sign shown
a real-world sign commonly used in the physical environment,
such as on roads, highways, or streets? If ’yes’, name the sign
in three words. If 'no’, simply respond with 'no’.

However when working with LLaVA models, we first need
to quantize the models as outlined in Section [[II-B] This quan-
tization is crucial for running these models on the hardware
of a ZED BOX. Following this, we apply the same method
used for the GPT-4V model by feeding images captured by
ZED X stereo camera into the quantized LLaVA models
and we employed the same binary classification prompt for
NDD attack identification. This direct approach enables us
to evaluate the model’s performance in real-time, mirroring
potential real-world applications in autonomous vehicles.

In a parallel experiment, we replicated this setup using a
Raspberry Pi 4 Model B. This experiment aimed to assess the
portability and efficiency of our approach on more constrained
hardware environments. It is worth noting that the Raspberry
Pi does not have the GMSL2 port to connect ZED stereo
camera. Therefore, we utilized the images that were previously
captured using the ZED BOX setup and then fed directly into
the Raspberry Pi. This approach ensured consistency in the
testing environment across different hardware platforms.

TABLE IV
COMPARISON OF RP1 AND ZED BOX AGAINST AES
Device Model Accuracy F1-Score Precision Recall
GPT-4V 77.27% 48.28% 35.00% 77.78%
ZED BOX LLaVA-7B 59.09% 18.18% 12.50% 33.33%
LLaVA-13B  53.03% 34.04% 21.05% 88.89%
GPT-4V 74.24% 45.16% 31.82% 77.78%
Raspberry Pi  LLaVA-7B 59.10% 30.08% 20.00% 66.70%
LLaVA-13B  48.48% 29.16% 17.94% 77.77%

D. Results

Table [[V] illustrates the comparative performance of the
Raspberry Pi and ZED BOX in handling LMMs to detect
NDD attack samples. Notably, the GPT models on the ZED
BOX and Raspberry Pi demonstrate higher accuracy of 77.27%
and 74.24%, respectively. This observation aligns with the
outcomes presented in Task 1, as illustrated in Table |I_]], where
GPT models emerge as the superior among other LMMs.
Despite using the same GPT environment and images as
deployed on the ZED BOX, the GPT model on Raspberry
Pi shows a slight decline in its performance.

Meanwhile, the LLaVA models displayed varying perfor-
mances, with LLaVA-7B surprisingly outperforming the more
robust LLaVA-13B model. This unexpected outcome may stem
from the inherent complexity and quantization tolerance of
each model. LLaVA-7B, being less complex than LLaVA-13B,
might be more resilient to the precision loss from quantization,
retaining more effectiveness. This means that when the models
are converted to a lower precision format (such as fp/6 binary
format) for deployment in environments with limited hardware
and memory capacity such as in AVs, the less complex
LLaVA-7B model retains more of its effectiveness compared
to the more complex LLaVA-13B.

Figure 5] analyzes the latency in processing LMM:s to detect
NDD attack samples. GPT-4V shows the shortest processing
time among the three models for both devices averaging
around 4.5 seconds per image. One the other hand, LLaVA-
13B shows a significant latency on the Raspberry Pi, with pro-
cessing times exceeding 30 minutes per image, while the ZED
BOX processes the same model in roughly 10 minutes per
image. LLaVA-7B demonstrates considerably lower latency on
both devices, with the Raspberry Pi taking around 10 minutes



per image and the ZED BOX about 5 minutes.

The substantial latency difference between the LLaVa and
GPT models is associated with the computational complexity
of LMM. The latency observed in GPT models is mainly net-
work round-trip time (RTT) latency, where data is transmitted
to and from the server for processing. In this scenario, the
actual computation is being carried out on OpenAl servers.
Unlike GPT, the LLaVA models require heavy computations
to be performed directly on local hardware, leading to higher
computational latency, especially in resource-constrained en-
vironments such as the Raspberry Pi or ZED BOX. Hence,
this latency becomes a critical bottleneck, particularly in
time-sensitive applications in AV, underscores the need for
optimization strategies focused on reducing computational
overhead on LMMs.

30 [ Raspberry Pi 771 Raspberry Pi
[ ZED Box 8 [ ZED Box
z 2
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Fig. 5. Comparative Performance Analysis: Processing Times of ZED Box
vs. Raspberry Pi

VI. DISCUSSION
A. Implications

Numerous studies show AV attacks on Object Tracking
[30], Traffic Light Detection, Camera Localization and Ob-
ject Detection [30], These attacks can cause malfunctions in
perception systems, leading to severe consequences. Adversar-
ial training, adversarial detection, input reconstruction, input
denoising, network verification, and a combination of multiple
models, such as defensive distillation and ensembling, are
some popular defense methods against perception attacks [31]].
While the performances of these methods in attack scenarios
can increase the resilience of machine learning and deep
learning models, they are often not comparable to non-attack
scenarios and are still vulnerable to unknown attacks [32].

Due to the relative novelty of LMMs, only few studies [33]]
have demonstrated the application of LMMs in AVs. However,
none have specifically utilized LMMs as an in-vehicle tool
for helping the perception system with recognizing adversarial
attacks. By leveraging the strengths of LMMs in environmental
perception and decision-making and combining them with
AVs’ perception system to identify and react to road markers,
these vehicles are becoming more adept at navigating complex
driving scenarios. The result is a more robust and intelligent
system that adapts to road challenges, potentially increasing
autonomous vehicles’ safety and efficiency.

B. Limitations

Simulating a real-world environment and accurately show-
ing the AV’s performance with LMM integration was chal-

lenging. Directly deploying LMMs in real cars for detecting
adversarial traffic signs, as tested in Section was impractical
due to the limited power and hardware of current AVs. In
this context, Tesla’s HW4 system, an advanced update to the
Autopilot ECU, is specialized for autonomous driving with
features like 20 ARM cores, 2 GPUs, three neural network
processors, and 16GB RAM, all optimized for this purpose. In
contrast, the ZED Box, a powerful Al computer with spatial
computing capabilities, comes with 16GB RAM and an Al
performance of 100 TOPS, making it well-suited for versatile,
high-performance Al tasks, including running LMMs.

The second limitation involved using varied prompts for
dataset generation and human perception evaluation of real
signs. Generating AEs varied significantly across traffic signs,
with the Stop Sign being easier than the other three groups.
This led to tedious experimentation with prompts for each sign
type to generate the dataset. In future work, we aim to address
these challenges by evaluating advanced prompting strategies
like the ’chain of thoughts’ method and conducting a user
study to see if users can identify these AEs as real traffic
signs.

VII. RELATED WORK

Mao et al. [34] integrated OpenAl’'s GPT-3.5 with a ve-
hicle’s motion planner, treating it as a language modeling
problem. This method allows the GPT model to act as a plan-
ner that explains decisions in natural language. Tests on the
nuScenes dataset confirm its effectiveness and interpretability,
showing its potential to advance autonomous driving with
language model features. Yang et al. [35] discussed using
LLMs to enhance human-centric autonomous systems for
interpreting user commands, focusing on complex and emer-
gency scenarios in autonomous vehicles. Chen et al. [33]] show
that LMMs are utilized in autonomous driving for enhancing
context understanding and decision-making through a novel
object-level multimodal architecture that merges vectorized
modalities with pre-trained language models. Zarza et al. [36]]
show improved traffic accident prediction using deep learning
and introduce real-time interventions with compact large lan-
guage models. Our exploration of LMMs in the realm of AVs
marks a significant advancement in automotive technology.

VIII. CONCLUSION

Our work revealed LMMs’ potential to enhance AV per-
ception systems in adversarial scenarios. We created a small-
scale NDD attack dataset to evaluate LMMSs’ detection abilities
against diffusion model attacks. We refined this dataset using
the ResNeXt model, choosing images predicted with over 80%
confidence as non-representative of real-world traffic signs,
highlighting their applicability strictly in adversarial tests. This
highlights the potential for sophisticated NDD attacks to mis-
lead autonomous driving systems. In detecting NDD samples,
our comparative analysis shows the superior performance of
LMMs with an average accuracy of 82.52% across the selected
models compared to 37.75% for state-of-the-art deep learning
models. Finally, we discuss the implications and limitations of



our research. We hope that our study and dataset will inform
the autonomous vehicle community about the potential of
LMMs in detecting adversarial attacks, thus enhancing vehicle
safety and security.
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