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Abstract— As the advent of autonomous vehicle (AV) technol-
ogy revolutionizes transportation, it simultaneously introduces
new vulnerabilities to cyber-attacks, posing significant chal-
lenges to vehicle safety and security. The complexity of these
systems, coupled with their increasing reliance on advanced
computer vision and machine learning algorithms, makes them
susceptible to sophisticated AV attacks. This paper explores the
potential of Large Multimodal Models (LMMs) in identifying
Natural Denoising Diffusion (NDD) attacks on traffic signs.
Our comparative analysis show the superior performance of
LMMs in detecting NDD samples with an average accuracy
of 82.52% across the selected models compared to 37.75% for
state-of-the-art deep learning models. We further discuss the
integration of LMMs within the resource-constrained compu-
tational environments to mimic typical autonomous vehicles and
assess their practicality through latency benchmarks. Results
show substantial superiority of GPT models in achieving lower
latency, down to 4.5 seconds per image for both computation
time and network latency (RTT), suggesting a viable path
towards real-world deployability. Lastly, we extend our analysis
to LMMs’ applicability against a wider spectrum of AV attacks,
particularly focusing on the Automated Lane Centering sys-
tems, emphasizing the potential of LMMs to enhance vehicular
cybersecurity.

I. INTRODUCTION

In the past few years, autonomous vehicle (AV) systems
witnessed great success of deep neural networks (DNNs) in a
variety of computer vision tasks, such as image classification,
object detection, etc. These advanced models have become
increasingly robust against a multitude of AV attacks. For
instance, techniques that use shadows [1] or stickers [2] to
deceive traffic sign detection systems in autonomous vehicles
have been effectively countered by the enhanced capabilities
of DNNs [3]. The evolution of DNNs has improved traffic
sign recognition accuracy, significantly boosting autonomous
vehicles’ safety and efficiency.

However, with the advancement of diffusion models in
image generation, they reveal new vulnerabilities that could
be a challenge for the robust detection capabilities of the
existing DNN models [4]. For example, innovations, such as
OpenAI’s DALL-E [5], Adobe Firefly [6], and the VQ-GAN
+ CLIP [7] combination have redefined image generation,
seamlessly converting text descriptions into detailed, pho-
torealistic images. Images from these models pose a threat
to AV systems, especially with Natural Denoising Diffusion
(NDD) attacks [8], a new cybersecurity challenge for AVs.

*The first two authors contributed equally and are ordered alphabetically.

Victim’s Car

Attacker’s Store

Adversarial Traffic Sign

Fig. 1. The victim’s car is approaching a pole in front of the attacker’s store
with an adversarial traffic sign depicting the word ’HI!’. In our experiments,
this sign has been classified as a stop sign by ResNeXt with a confidence
score of 95%.

Attackers can use diffusion models to create images that,
while not actual traffic signs, deceive AV perception systems’
DNNs into recognizing them as real traffic signs. Since it
is illegal to use, alter, or replicate official traffic signs [9],
attackers can use NDD attacks to manipulate AV behavior
without legal risks associated with physically tampering or
using authentic road signs. An attacker could generate a
fake Stop sign, visually distinct yet recognized by an AV’s
perception system, avoiding law enforcement attention but
potentially causing the AV to stop unexpectedly, leading to
confusion or accidents.

The advent of Large Language Models (LLMs) marks
a significant milestone in Artificial Intelligence and Large
Multimodal Models (LMMs) [10], [11] expand the capa-
bilities of LLMs by incorporating visual signals. LMMs
excel not only in handling and generating substantial textual-
only tasks, but also demonstrate impressive performance in
various multimodal tasks, such as video recommendations
and image understanding [12], amongst others. This paper
presents an in-depth analysis of the robustness of LMMs
against NDD attacks and their integration into AV sys-
tems. Given the success of generative pretraining in vision-
language modeling, we use combined visual and textual data
such as multimodal GPT-4V [13] and LLaVA [14]. This
paper further discusses how the use of instruction tuning in
LMMs was instrumental in identifying NDD attack sample
images. In summary, we make the following contributions:

• We conduct comprehensive evaluation of large mul-
timodal models (LMMs) in identifying traffic signs
compromised by NDD attacks. Our findings show that
LMMs, such as GPT-4V and Google Bard showed
accuracies of 84.06% and 85.42% respectively, outper-



forming state-of-the-arts models such as ResNeXt and
MobileNet, which had much lower accuracies (below
18.67%). 1

• We integrate LMMs into constrained computing envi-
ronments, which are common in AVs, to demonstrate
their potential feasibility in real-world scenarios. Our
results illustrate that the latency was significantly high
when these models were run locally. Conversely, server-
run models like GPT-4V reduced latency to about 4.5
seconds, enhancing their practicality in AV systems.

• We expand the usage of LMMs’ defensive capabilities
against other AV attacks beyond traffic sign detection.
We evaluate the effectiveness of LMMs in detecting
road markings in the presence of adversarial patches
in Automated Lane Centering (ALC) systems.

II. RELATED WORK

Mao et al. [15] introduced a novel approach to autonomous
driving by integrating OpenAI’s GPT-3.5 model into a ve-
hicle’s motion planner. By treating motion planning as a
language modeling problem and using language tokens for
input and output, the study effectively transforms the GPT
model into a planner that can also explain its decisions in
natural language. Successful experiments on the nuScenes
dataset showcase the approach’s effectiveness and inter-
pretability, highlighting its potential to enhance autonomous
driving with advanced language model capabilities. Yang et
al. [16] discussed using LLMs to enhance human-centric
autonomous systems for interpreting user commands, focus-
ing on complex and emergency scenarios in autonomous
vehicles. It investigates various LLMs’ efficacy and prompt
designs in a few-shot multivariate binary classification. The
findings confirm LLMs’ general capability to comprehend
and logically process prompts.

Chen et al. [17] show that LMMs are utilized in au-
tonomous driving for enhancing context understanding and
decision-making through a novel object-level multimodal
architecture that merges vectorized modalities with pre-
trained language models. Zarzà et al. [18] show improved
traffic accident prediction using deep learning and introduce
real-time interventions with compact large language models,
enhancing autonomous driving systems for safer smart city
planning. Our exploration of LMMs in the realm of AVs
marks a significant advancement in automotive technology.

A. Threat Model

An attacker can get the same Traffic Sign Recognition
(TSR) module as in the victim’s vehicle to comprehend its
implementation fully. This can involve buying or leasing the
same car model as the victim’s and then reverse engineering
it, a method proven feasible with Tesla’s Autopilot [19].
Additionally, it’s worth noting that some TSR module al-
gorithms used in production are open-source [20]. Using
the white-box knowledge, the attacker creates and places an
adversarial traffic sign with the text ’HI!’ on a pole across

1The implementations codes of this work and generated dataset are
available at https://github.com/moaldeen/LMM on AV.

from their store, as illustrated in Figure 1. The victim’s
vehicle which is headed towards the store will recognize the
fake traffic sign as a stop sign and come to a halt.

The goal of the adversary is to minimize the obviousness
of the generated traffic sign to increase stealthiness. To
achieve this, context-aware adversarial example generation
is recommended. For instance, the adversary might want to
install an adversarial traffic sign resembling the image of
a vegetable near a grocery store. We assume the attacker
exclusively targets the TSR module using AI-generated signs,
without considering patches or alternative threats.

III. DATASETS AND MODELS

A. Dataset

To systematically assess the effectiveness of LMMs in
identifying these NDD samples as adversarial, we first use
the Adobe Firefly diffusion model [6] to generate a small-
scale dataset containing NDD adversarial examples. We used
text prompts aimed to disrupt the fundamental properties that
humans typically use to identify these signs. For example, we
focused on altering the most important visuals of traffic signs,
changing their shape, texture, and color. These elements
are crucial for how objects are typically recognized, as
emphasized in existing research [21]. To generate a diverse
set of samples, we created combinations such as altering
both shape and text, shape and pattern, alongside other
combinations, as depicted in Table I. Subsequently, two of
the authors filtered the dataset manually to ensure that the
generated images do not reflect actual traffic signs.

The generated dataset features images of four common
traffic signs from the German Traffic Sign Recognition
Benchmark (GTSRB) [22], namely no entry 2a, priority
road 2b, stop sign 2c, and yield 2d, 40 variations were
generated from each of the 4 real signs, resulting in a
total of 160 signs. Each sign was changed in 4 features,
resulting in 10 variations for each feature. We validated
the adversarial effectiveness of our NDD dataset by testing
with the ResNeXt model, including only images predicted
as traffic signs with over 80% confidence, to assess the risk
of NDD attacks misleading autonomous driving systems.

(a) No Entry (b) Priority Sign (c) Stop Sign (d) Yield Sign

Fig. 2. The Selected Traffic Signs

B. Models

To thoroughly evaluate the generated NDD dataset, we
employed a different set of models. Our selection includes
state-of-the-art models from conventional deep neural net-
works paradigms, such as pre-trained ResNeXt model that
had been trained on GTSRB dataset [23], and manually
trained MobileNet [24], VGG16 [25], YOLOv5 [26], serving
as a baseline for our comparisons. On the other hand,

https://github.com/moaldeen/LMM_on_AV


TABLE I
A DETAILED BREAKDOWN OF HOW WE GENERATE THE NDD DATASET. WE ELIMINATE OR MODIFY SOME OR ALL OF THE FOUR FEATURES. THE

RESNEXT MODEL IS USED TO CALCULATE THE PREDICTED CLASS AND CONFIDENCE SCORE.

Features Generated Sample Predicted Class + Confidence Combination Features Generated Sample Predicted Class + Confidence

Shape Prediction: No Entry

Confidence: 99.7%
Shape & Text Prediction: Stop Sign

Confidence: 98.9%

Color Prediction: No Entry

Confidence: 99.3%
Shape & Pattern Prediction: Stop Sign

Confidence: 99.9%

Text Prediction: Stop Sign

Confidence: 99.9%
Color & Pattern Prediction: No Entry

Confidence: 93.44%

Pattern Prediction: Yield

Confidence: 95.5%

Shape & Text & Color & Pat-
tern

Prediction: Yield

Confidence: 85.07%

TABLE II
TEXT PROMPT FORMAT AND EXAMPLES FOR GENERATING AES FROM ”STOP SIGN”.

Prompt for Generating AEs
Altered Feature Prompt Format Example: Stop sign

- Generate [Traffic Sign] Stop sign
Shape Generate [Shape] [Traffic Sign] Circular Stop sign
Color Generate [Color] [Traffic Sign] Black Stop sign
Text Generate [Traffic Sign] with a [Text] on it Stop sign with ”Hi” on it

Pattern Generate [Traffic Sign] with a [Pattern] on it Stop sign with a dotted pattern on it

we incorporated Large Multimodal Models (LMMs) such
as GPT-4V [13], LLaVA-7B, LLaVA-13B [14], as well as
Google Bard [27]. For the testing process, all LMMs were
employed in their pre-trained state without any further fine-
tuning to assess their out-of-the-box efficacy against the
NDD dataset.

LMMs are intensive and memory-demanding, posing chal-
lenges in environments with limited hardware, such as au-
tonomous vehicles. Quantization [28] emerges as a vital
technique to reduce the precision of weight values, thereby
conserving memory and accelerating the inference process,
all with minimal impact on the performance of the model
[29], as will be discussed in Section V. Therefore, we first
convert the LLaVA models to a fp16 binary format. The focal
point of our quantization process is reducing the number of
bits used to represent each weight in the model to 4-bits.

IV. TASK 1: NDD ATTACK DISCOVERY

A. Goal

In this task, LMMs are asked to discover if images in the
generated NDD dataset are related to actual traffic signs to
evaluate their practical applicability in real-world scenarios.
AVs, for example, use traffic sign recognition models as
part of their navigation systems. Through this comprehensive
evaluation, we aim to understand how different models react
to the NDD attack and assess the robustness of the LMMs
model against NDD attacks.

B. Experimental setup

We formulate NDD attack discovery as a binary-class
classification task. Given an NDD sample image from the
dataset, we ask the LMM model via prompt whether the
image corresponds to actual traffic sign. Here is the prompt
used in this scenario: “Q1: Is the traffic sign displayed
a real-world traffic sign that has the same shape, color,
pattern and text as real world traffic sign ? Answer with
’yes’ or ’no’.”. Then, we enumerate the AE images in the
dataset, systematically presenting each to the LMMs for
classification.

Similarly, we evaluate traditional traffic sign detection
models, ResNeXt, MobileNet, YOLOv5, VGG16 in iden-
tifying traffic signs within the NDD dataset. To thoroughly
assess each model’s performance, we not only obtained the
inference results from each image in the dataset but also
focused on acquiring the confidence scores of each classified
image since a high confidence score in classifying a NDD
sample can reveal the model’s susceptibility to such attacks.
For instance, if a model wrongfully classifies a non-actual
traffic sign (from our generated NDD dataset) as a legitimate
traffic sign with high confidence, it indicates a potential
vulnerability in the model’s detection capabilities.
C. Results

Table III presents the overall detection results of all four
signs in the generated NDD dataset. Rather than measuring
the misclassified traffic sign class, the table evaluates if each
model identifies NDD signs as a legitimate traffic sign or not.
For example, the accuracy in Table III reflects the model’s



TABLE III
COMPARISON OF LLMS AND TRADITIONAL MODELS AGAINST NDD

ATTACK SAMPLES

Type Model Accuracy F1-Score Precision Recall

LLMs

GPT-4V 84.06% 86.73% 92.42% 84.06%

Bard 85.42% 85.94% 86.82% 85.42%

LLaVA-7B 79.80% 79.93% 80.88% 79.80%

LLaVA-13B 80.81% 83.48% 88.70% 80.81%

Traditional Models

ResNeXt [23] 17.17% 6.34% 3.99% 17.17%

MobileNet [24] 18.67% 22.41% 62.50% 15.01%

YOLOv5 [26] 44.12% 43.57% 65.11% 38.22%

VGG16 [25] 71.05% 66.56% 71.10% 78.88%

capability to identify samples in the NDD dataset as non-
actual traffic signs. We observe GPT and Bard to exhibit the
highest accuracy achieving 84.06% and 85.42%, respectively.
LLaVA-7B and LLaVa-13B also demonstrate noteworthy
performance with accuracies of 79.80% and 80.81%, respec-
tively. While the LLaVA models are effective in identifying
NDD samples as non-actual traffic signs, they are slightly
outperformed by GPT and Bard. On the other hand, tradi-
tional DNN models such as ResNeXt and MobileNet and
YOLOv5 show significantly lower accuracy in identifying
NDD samples, with accuracies of 17.17%, 18.85% and
44.12%, respectively. Nonetheless, VGG16 emerges as an
exception among traditional models, achieving a noteworthy
accuracy of 71.05% and the highest F1-Score in its cate-
gory, indicating a relatively better but still not comparable
performance to LMMs.

This notable success in LLMs is largely due to the their
ability to handle complex visual patterns due to their exten-
sive training on diverse datasets. LMMs have an advanced
understanding of context. This means they are better at
interpreting the broader meaning or implications of the data
they process, rather than just focusing on specific features.
This capability makes them more effective at identifying
anomalies or irregularities in data, which is crucial for
detecting and responding to attacks, where data might be
intentionally altered to mislead the model. On the contrary,
traditional DNN models rely heavily on visual cues or
specific features in the data they are trained on such as shape,
color, and text. These models have been optimized to identify
these features with high accuracy under normal conditions.
In the case of NDD attacks, these visual features are subtly
manipulated so that traditional models still continue to pre-
dict the presence of traffic signs with high confidence. This
overconfidence is likely due to the altered signs still retaining
enough of the original features to trigger recognition by the
model. The LLMs vary in false positive rates, with Bard at
8.33%, LLama-7b at 10.10%, GPT at 14.49%, LLama-13b
at 16.16%, and Resnex with the highest rate at 82.83%.

Despite the strong performance of Google Bard, integrat-
ing it was tough due to no official API. We used an unofficial
API [30], which worked but had limits, especially handling
lots of images. It couldn’t process batches over 30 images
well, even with delays. So, we only used this method for
Task 1, leaving Bard out of Table IV and in Task 2.

TABLE IV
COMPARISON OF LMMS AND TRADITIONAL MODELS AGAINST

NON-AES FOR GTSRB DATASET

Type Model Accuracy F1-Score Precision Recall

LMMs

GPT-4V 79.04% 84.79% 95.06% 79.04%

LLaVA-7B 73.00% 69.91% 80.92% 73.00%

LLaVA-13B 70.00% 62.39% 59.66% 70.00%

Traditional Models

ResNeXt [23] 99.50% 99.50% 99.51% 99.50%

MobileNet [24] 93.50% 96.44% 99.99% 93.50%

YOLOv5 [26] 54.80% 56.86% 94.67% 52.81%

VGG16 [25] 99.00% 99.20% 99.22% 99.20%

V. TASK 2: LMM INTEGRATION IN AV PERCEPTION

A. Goal

Building upon the insights gained from Task 1, where
LMMs demonstrated a notable proficiency in identifying
the images within our generated NDD dataset as non-
actual traffic signs, the goal of this task is to explore the
feasibility of integrating LMMs into the perception systems
of autonomous vehicles to enhance decision-making and en-
vironmental understanding. We examine how the integration
of LMMs, with their significant computational requirements,
aligns with the operational capabilities of AVs, aiming to
strike an optimal balance between enhanced cognitive pro-
cessing and the computational efficiency of onboard vehicle
systems.

B. Method

In the first phase, we integrated ZED BOX [31], designed
for running sophisticated neural networks and processing
voluminous 3D sensor data in real-time, which is crucial
for the complex decision-making processes of autonomous
vehicles. It allows to run modern neural networks and process
3D sensor data in real-time . The ZED BOX is equipped
with the latest JetPack, along with CUDA, TensorRT, and
CuDNN libraries, making it a robust platform for advanced
computing tasks. Furthermore, one of the major tasks in
perception systems is object detection, which is essential
for safe navigation without collisions. The ability to detect
objects and take appropriate actions, such as braking or path
adjustment, relies heavily on assessing the distance to poten-
tial obstacles. To achieve this, we employ a stereo camera
system, which, by featuring two camera sensors, mimics
human binocular vision and can capture three-dimensional
images. Specifically, we utilized the ZED X – an IP66-
rated stereo camera powered by the Neural Depth Engine 2,
designed for next-generation robotics and ideally suited for
industrial environments. This camera employs triangulation
to construct a three-dimensional understanding of the scene,
thereby significantly improving our perception of space and
motion within the test environment.

In the second phase, we utilize the Raspberry Pi as an
Electronic Control Unit (ECU) to simulate an autonomous
vehicle’s perception system, particularly focusing on its
response to NDD dataset. We chose the Raspberry Pi 4
Model B, which features 8GB RAM and 64GB ROM, a
Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-
bit SoC running at 1.8GHz, due to its similar specifications
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Fig. 3. Workflow of the LLM as a Verification Layer in an Autonomous Vehicle’s Perception System.

to comparable autonomous driving ECUs. For instance,
while not as advanced as the high-computing Tesla HW3
or HW4, the Raspberry Pi 4’s processing capabilities and
system architecture offer a modest parallel to early versions
of Tesla’s Autopilot hardware, such as HW1. Specifically,
Raspberry Pi 4 provide a sufficient platform for handling
tasks such as image recognition and processing sensor data,
similar to the capabilities of the Mobileye EyeQ3 chip in
Tesla’s HW1 Moreover, it allows us to create a controlled
environment where LMMs can be tested on their ability to
process environmental data, including images from the NDD
dataset.

Traditional traffic sign detection models based on DNNs
have proven to be effective in accurately recognizing non-
adversarial traffic signs, as shown in Table IV. Meanwhile,
LMMs demonstrate promising capabilities in identifying
NDD attack examples. Therefore, we deploy LMMs in our
system as a verification layer, and the workflow of this
approach is illustrated in Figure 3. This integration forms
a comprehensive perception system for street view analysis
in AVs. Initially, a traffic sign recognition model scans the
street to locate and identify traffic signs then models such
as ResNeXt are utilized to classify the specific type of
traffic sign detected. When the vehicle approaches within a
proximity of 7 meters to the traffic sign, LMMs are activated
as a verification layer to confirm whether the identified
sign is non-adversarial. Based on the outcome of the LMM
verification, the system either warns the driver if the sign is
deemed adversarial or allows the vehicle to continue driving
if the sign is verified as legitimate.

Adversarial 
Example

ZED X Stereo 
Camera

Distance

ZED BOX

Fig. 4. Experimental Setup

To determine this operational range of 7 meters for LMM
activation, we conducted a series of tests at varying distances.
These tests were designed to identify the threshold distance
at which the LMMs reliably and accurately identified traffic
signs as adversarial or legitimate. We initiated our testing
process by capturing images (via ZED stereo camera) of
traffic signs from a close distance of 2 meters. LMMs were
capable of accurately identifying NDD signs in a short-range
scenario. Following that we tested at 5, 7, and finally 10
meters. The accuracy of the LMMs in identifying NDD signs
was high up until 7 meters. However, beyond this threshold,
it dropped significantly, leading us to set 7 meters as the
optimal activation range for the LMMs verification layer.
The observed decrease in accuracy beyond the threshold
can be related to the limited capability of the camera to
capture clear and detailed images at longer distances, leading
to a reduction in the quality of data fed to the LMMs.
Additionally, the nature of the signs being displayed on a TV
screen may have influenced the captured image quality. This
finding highlights the importance of considering both the
technological capabilities and the operational environment in
determining the effective range for LMM activation, ensuring
optimal threat detection and adequate response time for the
AV’s decision-making processes.

C. Experimental setup

We connect the ZED BOX to the ZED X stereo camera
module through its GMSL2 port to capture real-time images
from the NDD dataset projected on a TV, providing a dy-
namic and realistic testing environment as shown in Figure 4.
We deployed GPT-4V on it for testing the NDD dataset.
The captured images from the camera module are directly
fed into the GPT-4V model as we formulate NDD attack
identification with a binary classification prompt. The prompt
used in this scenario is: “Q2: Is the traffic sign shown a real-
world sign commonly used in the physical environment, such
as on roads, highways, or streets? If ’yes’, name the sign in
three words. If ’no’, simply respond with ’no’”.

However when working with LLaVA models, we first
need to quantize the models as outlined in Section III-B.
This quantization is crucial for running these models on
the hardware of a ZED BOX. Following this, we apply the
same method used for the GPT-4V model by feeding images
captured by ZED X stereo camera into the quantized LLaVA



TABLE V
COMPARISON OF RPI AND ZED BOX AGAINST AES

Device Model Accuracy F1-Score Precision Recall

ZED BOX

GPT-4V 77.27% 48.28% 35.00% 77.78%

LLaVA-7B 59.09% 18.18% 12.50% 33.33%

LLaVA-13B 53.03% 34.04% 21.05% 88.89%

Raspberry Pi

GPT-4V 74.24% 45.16% 31.82% 77.78%

LLaVA-7B 59.10% 30.08% 20.00% 66.70%

LLaVA-13B 48.48% 29.16% 17.94% 77.77%

models and we employed the same binary classification
prompt for NDD attack identification. This direct approach
enables us to evaluate the model’s performance in real-time,
mirroring potential real-world applications in AVs.

In a parallel experiment, we replicated this setup using a
Raspberry Pi 4 Model B. This experiment aimed to assess
the portability and efficiency of our approach on more
constrained hardware environments. It is worth noting that
the Raspberry does not have the GMSL2 port to connect the
stereo camera. Therefore, we utilized images that were pre-
viously captured using the ZED BOX and then fed directly
into the Raspberry. This approach ensured consistency in the
testing environment across different hardware platforms.

D. Results

Table V illustrates the comparative performance of the
Raspberry Pi and ZED BOX in handling LMMs to detect
NDD attack samples. Notably, the GPT models on the
ZED BOX and Raspberry Pi demonstrate higher accuracy
of 77.27% and 74.24%, respectively. This observation aligns
with the outcomes presented in Task 1, as illustrated in
Table III, where GPT models emerge as the superior among
other LMMs. Despite using the same GPT environment and
images as deployed on the ZED BOX, the GPT model on
Raspberry Pi shows a slight decline in its performance.

Meanwhile, the LLaVA models displayed varying per-
formances, with LLaVA-7B surprisingly outperforming the
more robust LLaVA-13B model. This unexpected outcome
may stem from the inherent complexity and quantization
tolerance of each model. LLaVA-7B, being less complex than
LLaVA-13B, might be more resilient to the precision loss
from quantization, retaining more effectiveness. This means
that when the models are converted to a lower precision
format (such as fp16 binary format) for deployment in
environments with limited hardware and memory capacity
such as AVs, the less complex LLaVA-7B model retains more
of its effectiveness compared to its more complex variant.

Figure 5 analyzes the latency in processing LMMs to
detect NDD attack samples. GPT-4V has the shortest pro-
cessing time among the three models for both devices
averaging around 4.5 seconds per image. One the other hand,
LLaVA-13B shows a significant latency on the Raspberry,
with processing times exceeding 30 minutes per image, while
the ZED BOX processes the same model in roughly 10
minutes per image. LLaVA-7B demonstrates considerably
lower latency on both devices, with the Raspberry taking
around 10 and the ZED BOX about 5 minutes per image.

The substantial latency difference between the LLaVa and
GPT models is associated with the computational complexity
of LMM. The latency observed in GPT models is mainly net-
work round-trip time (RTT) latency, where data is transmitted
to and from the server for processing. In this scenario, the
actual computation is being carried out on OpenAI servers.
Unlike GPT, the LLaVA models require heavy computations
to be performed directly on local hardware, leading to higher
computational latency, especially in resource-constrained en-
vironments such as the Raspberry Pi or ZED BOX.

Fig. 5. Comparative Performance Analysis: Processing Times of ZED Box
vs. Raspberry Pi

VI. TASK 3: GENERALIZING LMM DEFENSE AGAINST
FURTHER ATTACKS

A. Goal

Building on Task 2’s successful integration of LMMs into
AV perception systems using Raspberry Pi and ZED BOX,
this phase explores LMMs’ potential to identify and mitigate
attacks on Automated Lane Centering (ALC) systems. As
shown in Figure 6, ALC adjusts steering to maintain lane
centering but is vulnerable to attacks [32], [33], [34], com-
promising detection accuracy and leading to potential lane
departures. This task assesses LMMs’ effectiveness against
such attacks targeting ALC systems.

Camera      
inputs

Steering 
commands

ALC System

Preprocessing Lane Detection

Perception Layer

Control Layer

Control

Lane Tracking 

Planning Layer

Motion 
Planner

Fig. 6. Overview of a Common ALC System Design.

B. Method

To generate adversarial examples for attacking AV lane
detection, we utilized the Dirty Road Patch (DRP) attack
[32]. These patches disrupt the ALC system by mis-detecting
lane markings when placed on roads. We inserted two 75-
meter DRP patches into a CARLA simulator map [35]—an
open-source tool for autonomous driving research, featuring
realistic scenarios and sensor support. The efficacy of this
attack was tested under ClearNoon and WetCloudSunset
conditions. Adversarial patch visibility differed, as shown in
Figure 7, with one lane faded and the other more distinct.



Faded Lane

Adversarial 
Patch

Clear Marked 
Lane

Adversarial 
Patch

Fig. 7. Comparison of lanes (Faded Lane - Clear Lane)

TABLE VI
EFFECTIVENESS OF LLMS IN LANE MARKING DETECTION UNDER

ADVERSARIAL PATCHES.

.
Model Device Lane Type ClearNoon WetCloudSunset

GPT-4V
ZED BOX Faded Lane 100% 100%

Clear Lane 100% 100%

Raspberry Pi Faded Lane 100% 100%
Clear Lane 100% 100%

LLaVA-13B
ZED BOX Faded Lane 44% 33%

Clear Lane 60% 55%

Raspberry Pi Faded Lane 44% 33%
Clear Lane 60% 55%

LLaVA-7B
ZED BOX Faded Lane 33% 33%

Clear Lane 50% 44%

Raspberry Pi Faded Lane 33% 33%
Clear Lane 50% 44%

C. Experimental Setup

We replicated Task 2’s environment to test LMMs on ad-
versarial patches. The vehicle in CARLA navigated through
the town to the adversarial patch location. As the car moved
over the patch, the ZED X stereo camera module, connected
to the ZED BOX, captured 10 images. Initially, these images
were fed directly into GPT-4V, LLaVA-7B, and LLaVA-13B
on the ZED BOX, with the prompt: “Q3: Assuming that you
are a driver and see this view, what is your prediction on
the lane, and as a driver, will you go 1. ’straight’, 2. ’left’,
or 3. ’right’?”. This experiment was then repeated using
the Raspberry Pi 4 Model B under two different weather
conditions.

D. Results

As shown in [32], placing the adversarial patch on the
road caused the AV to mis-detect the lane marking, leading
to collisions. Although 100% successful when applied for
over 36 ms, tests show GPT-4V detects road markings
accurately with the patch, as depicted in Table VI. LLaVA
models, though not as effective as GPT-4V, reduce DRP at-
tack impacts. Correct detection by LMMs prevents incorrect
maneuvers, enhancing safety.

VII. DISCUSSION

A. Implications

There are numerous papers showing different AV attacks
targeting Object Tracking [36], Traffic Light Detection [37],
Object Detection [36], Camera Localization [37], and LiDAR
Perception [38]. These attacks can cause malfunctions in per-
ception systems, leading to severe consequences. Adversarial
training, adversarial detection, input reconstruction, input
denoising, classifier robustification, network verification, and
a combination of multiple models, such as defensive distil-
lation and ensembling, are some popular defense methods
against perception attacks [39]. While the performances of
these methods in attack scenarios can increase the resilience

of machine learning and deep learning models, they are
often not comparable to non-attack scenarios and are still
vulnerable to unknown attacks [40]. As shown in Section
VI, although the LMM has not been trained over these
adversarial patches and is thus an unknown attack, the LMM
appears to still detect the original lane markings correctly
in the presence of these patches. Therefore, we expect
that the impact of our research can go well beyond just
improving lane detection and help AVs’ perception systems
defend against different unknown attacks. Due to the relative
novelty of LMMs, only few studies [17] have demonstrated
the application of LMMs in AVs. However, none have
specifically utilized LMMs as an in-vehicle tool for helping
the perception system with recognizing adversarial attacks.
By leveraging the strengths of LMMs in environmental per-
ception and decision-making and combining them with AVs’
perception system to identify and react to road markers, these
vehicles are becoming more adept at navigating complex
driving scenarios. The result is a more robust and intelligent
system that can adapt to a variety of challenges on the road,
potentially increasing the safety and efficiency of AVs.

B. Limitations

In our project, we faced two main limitations. First, it
was challenging to simulate a real-world environment and
accurately show the AV’s performance integrated with the
LMM. Deploying the LMMs directly within a real car to
detect adversarial traffic signs, as tested in Section V, was not
feasible due to the limited power and hardware capabilities
typically found in current AVs. In this context, Tesla’s
HW4 system, an advanced update to the Autopilot ECU,
is specialized for autonomous driving with features like 20
ARM cores, 2 GPUs, three neural network processors, and
16GB RAM, all optimized for this purpose. In contrast, the
ZED Box, a powerful AI computer with spatial computing
capabilities, comes with 16GB RAM and an AI performance
of 100 TOPS, making it well-suited for versatile, high-
performance AI tasks, including running LMMs. Thus, a
simulated setup was employed using a ZED BOX equipped
with a ZED X Stereo camera, positioned in front of a
television. The ZED BOX functioned as a stand-in for an
AV’s vision and perception system, while the television
simulated the vehicle’s external environment. However, this
setup could not perfectly mimic the complex dynamics of
real-world scenarios. It provided a controlled and simplified
version of real-life scenarios but lacked the unpredictability
and complexity typically encountered in actual driving situa-
tions. Additionally, creating a realistic scenario for evaluating
the LMMs’ ability to detect original lane markings in the
presence of adversarial patches posed a significant challenge,
as detailed in Section VI. To accurately observe the LMMs’
impact on steering commands, their output needed to be sent
into the planning and motion planning modules of an AV’s
autonomous driving stack which introduced considerable
complexity due to the intricate nature of AVs’ system.



VIII. CONCLUSION

The potential of LMMs to enhance the perception systems
of AVs in adversarial scenarios has been discovered in our
work. To systematically assess the effectiveness of LMMs’
detection capabilities against diffusion model attacks, we
generated a small-scale NDD attack dataset. To ensure the
adversarial effectiveness of our dataset, we processed the
generated NDD dataset through the ResNeXt model, select-
ing images where the model predicted with more than 80%
confidence that these images do not represent real-world traf-
fic signs, underscoring their use strictly in adversarial testing
environments. This highlights the potential for sophisticated
NDD attacks to mislead autonomous driving systems. We
hope that our study and dataset will inform the autonomous
vehicle community about the potential of LMMs in detecting
attacks, thus enhancing vehicle safety and security.
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