
2025 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
MODULAR OPEN SYSTEMS APPROACH TECHNICAL SESSION

AUG. 12-14, 2025 - NOVI, MICHIGAN

ADVANCING AUTOMOTIVE SOFTWARE SUPPLY CHAIN SECURITY:
A BLOCKCHAIN-REPRODUCIBLE BUILD APPROACH

Iwinosa Aideyan1, Mert D. Pesé, PhD2, and Richard Brooks, PhD1

1 Holcombe Department of Electrical and Computer Engineering, Clemson University
2School of Computing, Clemson University

ABSTRACT
The automotive industry’s systems and over-the-air (OTA) updates have
vulnerabilities in its software supply chain (SSC). Although frameworks like Uptane
have improved OTA security, gaps remain in ensuring software integrity and
provenance. In this paper, we examine challenges securing the automotive SSC and
introduce a framework, GUIXCHAIN, that integrates version control, reproducible
builds, blockchain technology, and software bills of materials (SBoMs) for
transparency, auditability, and resilience. Reproducible builds guarantee identical
resulting binaries when compiling the same source code in different environments,
as any deviation in the final output indicates a potential compromise in the build
process, such as malware injection. Our preliminary study shows Guixchain’s
use of reproducible builds ensures consistent and integrity-secured software across
various build environments. The blockchain provides forensic capabilities, offering
a history of the what, who and where of discrepancies within the SSC process.
SBoMs provide an inventory of the software components used. Our preliminary
study demonstrates that Guixchain effectively mitigates risks such as ransomware,
unauthorized modifications, and build server compromises, reinforcing the system’s
integrity and resilience throughout the software life cycle. Future work will focus
on the full implementation of Guixchain and a comprehensive evaluation of its
performance in real-world automotive software supply chain scenarios.

Citation: I. Aideyan, M. Pesé, R. Brooks, “Advancing Automotive Software Supply Chain Security: A
blockchain-reproducible build Approach,” In Proceedings of the 2025Ground Vehicle Systems Engineering and
Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 12-14, 2025.

1. INTRODUCTION
Modern vehicles contain over 100 million
lines of code spread across numerous
Electronic Control Units (ECUs), improving

DISTRIBUTION A. Approved for public release;
distribution unlimited. OPSEC 9143

functionality and introducing a complicated
network of suppliers [1]. Original Equipment
Manufacturers (OEMs) must coordinate a
diverse ecosystem of tier 1, tier 2, and tier
3 suppliers, where a single fault from any
vendor could compromise the entire system.

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Historically, updating ECUs required
physical visits to dealerships, but the advent
of over-the-air (OTA) updates revolutionized
this process. The Uptane framework
[2], the most widely implemented OTA
solution, secures the delivery of updates
using advanced cryptography and secure
communication protocols. However, it does
not address SSC security of the updates
themselves particularly their integrity before
delivery.

To address these gaps, the in-toto
framework was introduced in 2019 to
protect software from its initial creation
to end-user installation [3]. Its integration
with Uptane led to the Scudo framework
[4], which offers end-to-end protection
for automotive ECUs using Uptane’s
pre-distributed keys. However, it still has
limitations: compromised keys can enable
unauthorized actions, replay attacks remain
possible, metadata overhead can affect
scalability, and integrating with legacy
systems can be difficult. Moreover, in-toto
does not safeguard the build environment
itself, leaving the compilation process, tools,
or environment vulnerable if they become
compromised. These constraints underscore
the need for an alternative approach.

This paper presents GuixChain, a novel
approach that integrates Git, blockchain,
reproducible builds and Software Bill of
Materials (SBoM). It leverages:

Git and Blockchain Integration: Git’s
distributed version control ensures precise
tracking of changes in the source code [5],
while the blockchain adds an immutable,
transparent ledger that permanently records
every change. This combination addresses
security and auditability requirements. While
Git excels at version tracking, its history
can be altered and lacks immutability. The
blockchain ledger, therefore, serves as an
immutable audit trail, ensuring that every

code change is permanently recorded and
verifiable, which is crucial for tracing the
origins of malicious components. This dual
approach mitigates risks like a single point
of failure, Distributed Denial of Service
(DDoS), ransomware, and unauthorized
modifications, and enhances transparency in
multi-stakeholder environments, effectively
creating a verifiable and tamper-proof record
of the software supply chain.

Reproducible Builds: Protect against
malicious code injection and build
server compromises. By integrating
Blockchain’s smart contracts that trigger
parallel, deterministic compilation across
multiple nodes, GuixChain guarantees that
identical source code produces byte-for-byte
consistent binaries. Smart contracts are
tamper-resistant programs that run on
blockchain technology, automatically
enforcing agreements between parties
without intermediaries. This reinforces
build integrity and makes any tampering
immediately evident.

Software Bill of Materials: SBoM provides
detailed traceability of every software
component [6]. When artifacts such
as images, metadata, and SBoMs are
hashed and cross-verified across nodes
before being transmitted to the Uptane
repository, any discrepancy prevents
unauthorized modifications from being
deployed. Additionally, SBoMs used to
find Common Vulnerabilities and Exposures
(CVE) entries in software libraries.

These integrated technologies secure
the automotive software supply chain by
ensuring the provenance and reproducibility
of software artifacts. The immutable ledger,
deterministic build processes, and enhanced
traceability combined counteract threats
such as arbitrary edits, insider threats, or
build server compromises. This approach
significantly reduces the risks of supply chain

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 2 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

attacks. This paper makes the following main
contributions:

• An analysis of automotive SSC
challenges.

• An evaluation of automotive industry
SSC frameworks.

• The Guixchain framework to provide
end-to-end security from code
development to artifacts repository.

• Blockchain-enabled reproducible builds
for decentralized verification to ensure
the software compiled from the same
source code results in identical outputs
across different nodes, increasing
resilience against malware injection.

• SBoM not merely as a compliance
requirement but as a proactive
security mechanism for real-time
tracking, verification, and vulnerability
assessment of software components
throughout the supply chain.

• A detailed threat model and
implementation strategy addressing
critical vulnerabilities.

We explore automotive software supply
chain security, beginning with background
and challenges in Sections 2-3. Section4
reviews existing frameworks, and Section 5
discusses OTA updates. Sections 6-7 present
and evaluate our GuixChain solution. Section
8 summarizes our findings.

2. BACKGROUND
Manufacturers use computer systems

to advance performance, value, comfort,
entertainment, maintenance, diagnostics, and
safety in the automotive industry. These
embedded systems run on firmware/software.
They include input/output components,
peripherals, real-time operating systems, and
communication networks. The evolution
of automotive software development began
in the 1980s and 1990s with hand coding

Figure 1: Vehicle Software Update Supply Chain

and has progressed through model-based
development (MBD), MBD with automatic
code generation [7], and now to update
capabilities via OTA.

Before the advent of OTA updates [8],
vehicle owners had to visit dealerships for
ECU software updates, a process that was
inconvenient, costly, and time-consuming.
Technicians at dealerships would connect
specialized equipment to the vehicle’s
diagnostic port, typically an onboard
diagnostics (OBD) system, to download new
firmware onto the ECUs. This controlled
environment ensured safe updates but lacked
flexibility and customer convenience.

OTA updates allow ECUs to be
updated remotely without physical access,
significantly enhancing the flexibility and
immediacy of software deployments, as seen
in Figure 1. In this setup, primary ECUs
such as the Telematic Control Unit (TCU)
receive updates over the air. They can either
distribute the update package to secondary
ECUs or instruct them to fetch and install
updates directly, minimizing downtime and
service interventions.

As mechanical systems are replaced with
embedded systems in vehicles, it is crucial
to consider the characteristics of automotive
software, which include functional safety,
reliability, dependability, security, real-time
capabilities, complexity, fault tolerance,
and fault recovery. Throughout the
software development lifecycle (SDLC)

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 3 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

[9], code is created using the V-cycle
model to ensure complete verification and
validation of all processes, from requirement
analysis to coding, testing, and deployment.
Ensuring complete implementation of these
characteristics during the update process is
vital.

As the automotive sector progresses
towards electric vehicles, autonomous or
semi-autonomous fleets, self-driving cars,
and software-defined vehicles (SDVs), the
complexity involved in vehicle development
escalates. Consequently, a greater reliance
on software within ECUs, such as safety
systems, maps and navigation software,
entertainment and communication systems,
and connectivity with other consumer
devices, significantly influences vehicle
quality and performance [7]. Alongside
this evolution and automotive software
development, concerns about cybersecurity
and vulnerabilities that malicious actors
could exploit have intensified.

OEMs depend on a network of suppliers
for critical components and software,
either from tier 1 or tier 2 providers. This
dependence persists even when OEMs
develop software internally, frequently
utilizing codebases or templates from these
suppliers as a foundational element. This
practice leverages the supplier’s expertise and
pre-existing solutions, tailored to meet the
specific requirements of different OEMs [10].
Ironically, while OEMs may procure similar
products from the same suppliers, these
products are customized to align with each
OEM’s unique branding, functionality, and
performance specifications. Consequently,
companies that serve multiple OEMs across
various programs and product lines face
a complex web of differing configuration
management requirements, change control
policies, and data management procedures,
many of which are inadequately documented
and communicated [11], as seen in Figure 2.

Supplier

OEM

OEM

OEM

OEM

OEM

OEM

OEM

OEM

OEM

Supplier
Supplier

Supplier

Supplier

Supplier

Supplier

Supplier

Supplier

Supplier

Supplier

Supplier Ecosystem OEM Ecosystem 

Figure 2: Supplier and OEM ecosystems

The relationship between OEMs and
suppliers is characterized by collaboration
and customization, which presents several
software challenges regardless of in-house
development. The increasing complexity
and interconnectedness of software supply
chains renders them susceptible to significant
security threats, as the SolarWinds supply
chain attack vividly illustrates. In 2020,
malicious actors compromised SolarWinds’
Orion software, widely used for network
management [12]. By injecting malicious
code into the software updates, the attackers
accessed the networks of thousands of
SolarWinds customers, including major
corporations and government agencies.

Another example is the log4j vulnerability
[13], known as Log4Shell, which was
disclosed in December 2021. It affected
the Apache log4j library, a Java-based
logging utility; the vulnerability allowed log
messages to contain placeholders that were
dynamically replaced at runtime because the
Java Naming and directory interface(JNDI)
lookup in log4j was implemented insecurely.
An attacker could trigger log4j to execute
arbitrary Java code remotely. The supply
chain issue was that many versions of log4j
had enabled the JNDI lookup feature by
default, making a wide range of applications
and services vulnerable to remote code
execution attacks.

These concerns include recent attacks
on Okta[14], a widely used identity and
access management provider. In this

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 4 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

incident[15], the hacking group Lapsus$
gained unauthorized access to a third-party
support vendor, Sitel, which Okta relies
on for customer support services. The
attackers compromised a Sitel employee’s
account, allowing them to view internal
Okta support tools and systems for about
five days. This breach, affecting fewer
than 3% of Okta’s customers, raised serious
concerns because Okta’s identity and access
management solutions lie at the heart
of many organizations’ authentication and
single sign-on processes[16].

Imagine if a similar attack were to target
a top-tier agency, such as the Directorate
of Defense Trade Controls (DDTC), part
of the U.S. Department of State or the
Centers for Medicare Medicaid Services
(CMS), an agency within the Department
of Health and Human Services or other
critical governmental bodies. These
organizations depend on Okta’s secure
identity management to protect highly
sensitive data and maintain national security.
A breach of this magnitude could expose
confidential information, disrupt essential
services, and compromise national security.
Although the Okta incident did not involve
the direct injection of malicious code into
software updates or the build process, it
underscores the broader risks posed by
third-party vendor compromises. This
incident highlights the critical importance
of securing every link in the supply chain,
from the software build environment to
third-party service providers, to protect
against traditional supply chain attacks and
emerging threats that target privileged access
and support channels.

These incidents show the risk posed
by widely-used software components or
libraries that, when compromised, can
lead to cascading effects across numerous
systems and organizations globally. They
are particularly relevant to the automotive

industry, where integrating components and
software from various suppliers can create
similar vulnerabilities in multiple vehicles
from multiple OEMs.

3. CHALLENGES OF SECURING
THE AUTOMOTIVE SOFTWARE
SUPPLY CHAIN

According to the 9th Annual State of the
Software Supply Chain Report [17], there
has been a noticeable increase in the creation
of custom packages designed specifically
to download and execute harmful payloads
automatically, without any interaction from
developers. This trend poses significant
security risks, particularly in industries like
automotive, where software integration is
deeply embedded.

The automotive industry faces multifaceted
challenges in securing its software supply
chain. These challenges span from increasing
system complexity and high-quality demands
to intense time and cost pressures. Notably,
as Grimm [18] pointed out, the rapid
expansion of software integration in vehicles
introduces several organizational, technical,
and strategic challenges. Furthermore,
Broy [19] emphasized the difficulties
posed by rapid technological changes,
increased competition, shortened product
life cycles, operational complexity, and risk
management.

In addition, the rise of connected vehicles
has raised concerns about potential threats
from enhanced connectivity. Soriano
et al. [20] highlight that this increased
connectivity necessitates robust security
measures, particularly for IoT components
and ECUs. To navigate these challenges,
automotive companies must develop specific
competencies, including robust development
processes, quality management, supplier
collaboration, and system integration
capabilities. In addition, it is vital to

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 5 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

maintain security throughout extended
vehicle lifespans and implement continuous
vulnerability management strategies to
ensure long-term protection within the
automotive software supply chain.

In the following, we will look at eight
challenges in securing vehicle software
supply chains. This examination will draw
on insights from two key sources: the
observations of 30 industry and government
organizations on securing the software
supply chain [21] and a proposal to resolve
software supply chain vulnerabilities in
vehicles [4].

Challenge 1 - Updating vulnerable
dependencies: Different vendors have
disparate policies on when to update
vulnerable dependencies, leading to
coordination challenges across the software
supply chain. Organizations often hesitate
to be the first or the last to implement
updates, with some preferring isolated build
environments to limit reliance on dependency
updates. This lack of standardization
complicates the uniform application of
security updates. The growing complexity
of automotive software and the constant
need for updates highlight the importance of
effectively managing these dependencies to
ensure security over extended lifespans [18],
[20], [22].

Challenge 2 - Leveraging SBoM for
security: SBoM is mandated by legislation
to increase transparency and enhance
security within supply chains [23]. However,
its potential to improve security is often
underutilized and is treated more as a
compliance checklist than a proactive
security tool. Effective use involves creating
meaningful, verifiable security metrics that
demonstrate adherence to security policies
[21], [24].

Challenge 3 - Choosing trusted supply
chain dependencies: Selecting secure
and reliable dependencies is essential yet
challenging, especially under the zero-trust
principle. Although the Open Source
Security Foundation (OpenSSF) [25]
provides resources to mitigate the risks
associated with rogue packages, the balance
between thorough vetting and timely project
completion remains critical [26].

Challenge 4 - Securing the build process:
The security of the build process is
paramount, as vulnerabilities in this stage can
undermine all previous security measures.
One of the critical aspects of securing
the build process is ensuring reproducible
builds, which means that the builds should
be bit-for-bit identical under the same
conditions, which helps verify the integrity
of the build system. Achieving this across
platforms and programming languages
presents ongoing challenges[27]–[30] such
as:

• Build environment variability: Different
build environments may yield different
outputs from the same source code.
Operating system differences, available
system libraries, specific compiler
versions, build paths, etc., may vary and
affect the result.

• Platform and language differences:
Reproducible build techniques vary
depending on the language and platform.
In return, some languages/tools are
designed for reproducibility, while
others are not and will need to change
or make a specific toolchain.

• Toolchain variability: The tools
responsible for the build process
(like compilers and linkers) can cause
non-determinism. Changes to or updates
of these tools can then have an effect on
the reproducibility of the builds. It can

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 6 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

be a logistical headache to ensure that
different environments use these tools’
same versions and configurations.

• Time and date stamps: Many build
processes will automatically stamp a
current time and date in build outputs,
which could create incompatibility
between builds done later or earlier.

Challenge 5 - Size and diversity of
codebases: The extensive and diverse code
bases of modern vehicles, often exceeding
100 million lines of code, complicate the
implementation of effective supply chain
security strategies [18]. Trust in external
suppliers to ensure code quality and security
is paramount.

Challenge 6 - Getting industry-wide
participation: Securing the software supply
chain requires industry participation. Despite
initiatives like Sigstore[31] and in-toto[3]
laying the groundwork for collective security
efforts, widespread adoption is necessary.
Bridging the gap between individual
company policies and industry-wide best
practices requires concerted effort and time
[22].

Challenge 7 - Enhancing the use of
supply chain management software:
Although earlier studies [26] have shown
that supply chain management software
can reduce costs and work times, its full
potential for cooperative integration and
collaboration among stakeholders remains
largely unexplored. In today’s automotive
industry, solutions like SAP Integrated
Business Planning (IBP)[32], Oracle SCM
Cloud[33], Siemens Teamcenter[34],
and PTC Windchill[35] are employed to
streamline operations, enhance collaboration,
and integrate data-driven decision-making
across global networks. This indicates a
significant opportunity for further integration

and innovation to maximize benefits in the
automotive supply chain.

Challenge 8 - Addressing rising
connectivity and security concerns:
The rise in connectivity through connected
car technologies, such as 5G, has raised
security concerns. Continuous vulnerability
management and secure firmware/software
updates are crucial. The complexity of
SSC, with numerous dependencies, poses
significant security challenges with an
increasing number of attacks, necessitating
robust security measures [21], [24].

4. SSC FRAMEWORKS
APPLICABLE TO AUTOMOTIVE
INDUSTRY

This section discusses various SSC
frameworks that, while commonly employed
across multiple industries, hold significant
applicability to the automotive sector.
These frameworks are instrumental in
addressing the unique challenges automotive
software supply chains face. Recent
advancements in software solutions have
aimed to address these challenges through
various technologies and methodologies,
starting with:

The FISHY platform[24] is a sophisticated
cyber-resilient framework explicitly
designed to address the myriad of security
challenges in the automotive software supply
chain, focusing mainly on connected and
autonomous vehicles. Its main objective is
to forge trusted supply chains by bolstering
cybersecurity throughout the vehicle
lifecycle. This includes a comprehensive
suite of tools for continuous monitoring and
proactive vulnerability management, which
continuously scans for potential security
issues, allowing for the rapid deployment of
updates or patches to mitigate risks.

Moreover, FISHY promotes a secure

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 7 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

SDLC that embeds security considerations
from design to deployment. This methodical
inclusion of security processes, rigorous
risk assessments, and software attestation
ensures that the integrity and security of
each component is verified before integration.
The platform emphasizes the importance of
data management and privacy, ensuring that
sensitive information, such as biometrics and
location data, is anonymized and securely
managed to maintain user privacy while
supporting connected services functionality.

SBoMs provide transparency by offering
a machine-readable inventory of software
components, allowing faster identification
and remediation of vulnerabilities [36].
SBoMs can enhance transparency and
traceability in software supply chains as
they are a comprehensive list of software
components, dependencies, and firmware
metadata or a centralized inventory of
third-party components and dependencies
[37]. SBoM adoption is limited due to
differing incentives and concerns among
key business stakeholder groups involved in
production and consumption.

Sigstore [31] represents a significant
advancement in software signing technology,
integrating OpenID Connect (OIDC)
authentication, ephemeral keys, and
transparency logs to bolster security.
Developed to streamline the software
signing process, developers can quickly
authenticate their work without navigating
complex security protocols. This system is
designed to be straightforward: Developers
push their code, and Sigstore manages the
authentication and cryptographic processes
in the background.

The framework uses transparency logs to
record critical information about each piece
of software, including details about who
created it and where it was built. This ensures
that any software verified through Sigstore

can be traced back to its origin, assuring
that it has not been altered post-signing.
Moreover, the data stored within these logs
is designed to be easily auditable, laying a
robust foundation for integrating monitoring
tools and enhancing security workflows.
Despite its innovative approach and the
security enhancements it brings, Sigstore
has faced criticism for its dependency on
trusted third parties like OIDC providers
such as Google, Microsoft, and other identity
providers.

Critics like Chang et al. [38] argue that
existing command-line interface (CLI) tools
could offer similar functionalities without
relying on Sigstore’s key components,
suggesting that the system might benefit
from a more decentralized approach to
reduce reliance on external validators who
are third-party service that independently
verifies the authenticity and integrity of the
signed software artifacts. These validators
check the transparency logs to confirm that
the signatures and associated metadata have
not been altered since they were recorded.
This critique points to an ongoing debate in
the software security community about the
best balance between ease of use and the
minimization of trust assumptions in security
architectures

Grafeas/Kritis[39], meaning ”scribe” in
Greek, is an open-source initiative designed
to uniformly audit and govern the SSC
by integrating with existing DevOps tools
and workflows. It is a central repository
for metadata about all software artifacts
(container images, virtual machines, binaries,
or packages) and their storage location.The
primary strength of Grafeas lies in its
ability to store, query, and derive valuable
insights from the metadata associated with
these artifacts. For instance, it can be
leveraged to identify all artifacts derived from
a specific git commit known to introduce

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 8 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

a security vulnerability and detect artifacts
built using a compromised version of a build
tool, helping mitigate risks associated with
toolchain attacks. It can generate SBoMs
for artifacts, facilitating transparency and
adherence to regulatory requirements.

Grafeas supports both horizontal and
vertical querying of metadata. In contrast,
horizontal querying involves querying across
all artifacts based on a specific property.
Vertical querying focuses on gathering
detailed metadata across the software
development lifecycle for a specific artifact,
such as tracing all source, build, test, and
vulnerabilities metadata for a container
image.

In-toto provides a comprehensive framework
designed to secure the integrity of the
software supply chain by meticulously
verifying each step from development
through deployment[3]. This framework
ensures that all processes involved in creating
and distributing software are transparent and
secure, thereby preventing supply chain
attacks that could compromise software
before it reaches end users. The essence
of in-toto lies in its layout specification,
which acts as a blueprint for the SSC. This
layout outlines the steps required in the
software development process, identifies the
authorized functionaries to perform these
steps, and specifies the expected outcomes
of each step. The layout itself is signed by a
trusted party, which establishes a foundation
of trust and integrity before any software
development begins.

For example, imagine a recipe for baking a
cake. The recipe (layout) specifies every step:
mixing ingredients, baking, and decorating,
along with who is responsible for each step
(the functionaries). As you follow the recipe,
you take pictures or notes at each step (link
metadata) to show that the process is being
followed correctly. Later, if someone altered

the cake without your knowledge, you could
compare the notes to the recipe and detect the
deviation.

In-toto works in a similar way: as each
step in the software development lifecycle is
executed, cryptographically signed metadata
(link metadata) is generated, recording the
state of the software artifacts. This metadata
creates an auditable chain that makes it easy
to verify that every step was completed as
prescribed and to identify any unauthorized
changes. By capturing and verifying every
action within the software supply chain,
in-toto provides robust protection against
various attack vectors. Requiring that all
steps, from initial code generation to final
deployment, are verifiable and traceable
ensures that no unauthorized changes or
malicious code insertions occur at any point
in the supply chain [4].

This section on SSC challenges
and existing solutions explored several
technologies designed to enhance security
throughout the software lifecycle. The
following section looks at existing
frameworks tailored explicitly for automotive
OTA updates.

5. AUTOMOTIVE OTA UPDATES
This section discusses a prevalent OTA

framework used in the automotive industry,
Uptane[2], and its extension, Scudo[4],
to add SSC security. The workflow for
OTA vehicle updates involves securely
transmitting the updates from the OEM’s
servers directly to the car. This process
typically encompasses different stages:

Update Packaging: OEMs package the new
software or firmware update, which may
include new features, security patches, or
system optimizations.
Secure Transmission: The update is
transmitted over a cellular or Wi-Fi

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 9 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

connection to the vehicle’s infotainment
system or telematics control unit.
Verification: Upon receipt, the vehicle
verifies the authenticity and integrity of the
update using digital signatures.
Installation: The firmware on the ECU
is updated, which can occur either in the
background while the vehicle is operational
or when parked, depending on the nature of
the update.

5.1. The Uptane Framework
Uptane (Update Protocol for

Transportation and Network Security)
[2] is a foundational framework designed
to secure OTA software updates in the
automotive sector. It enhances the integrity
and authenticity of software updates
through a blend of signing, verification,
and redundancy mechanisms aimed at
thwarting various threats, including those
from malicious actors or compromised
servers. Uptane’s architecture is built on
the principle of a two-tier structure [40], an
image repository, and a director repository
that collaborates to ensure the secure delivery
of updates, as seen in Figure 3. The image
repository stores the actual software update
images (like firmware files) along with their
signed metadata, while the director repository
determines which specific updates should be
sent to each ECU based on its current state,
essentially acting as a guide for the update
process by providing signed metadata that
instructs which images to install from the
image repository; both repositories work
together to ensure secure software updates by
verifying the authenticity and integrity of the
updates throughout the process. The primary
ECU acts as a gatekeeper, receiving updates,
verifying their authenticity using extended
principles from The Update Framework [41],
and distributing them to secondary ECUs.
Each secondary ECU independently verifies
the update before installation, protecting

against the propagation of potentially
malicious or compromised updates within
the vehicle.

Moreover, Uptane allows for customizable
security policies tailored to different types
of ECUs, enabling manufacturers to adjust
security levels based on the criticality
of functions performed by each ECU. It
also includes mechanisms to accommodate
vehicles that may not connect consistently
to the Internet, facilitating secure offline
updates and interactions between the primary
and secondary ECUs. Its threat model
systematically categorizes potential attacks
into four primary groups, which are listed
below:
Read Updates: Addresses the threat of
intellectual property theft. In this scenario,
attackers might perform an eavesdropping
attack, intercepting unencrypted software
updates while transmitting from the
repository to the vehicle. Such unauthorized
access could lead to the extraction of
sensitive data or proprietary software,
potentially resulting in significant intellectual
property losses.
Deny Updates: This focuses on preventing
vehicles from accessing necessary software
updates. This can manifest through several
attack strategies: Drop-request attacks block
network traffic to prevent ECUs from
receiving updates. In contrast, slow-retrieval
attacks deliberately delay the delivery of
updates to exploit known vulnerabilities.
Freeze attacks repeatedly send outdated
software to prevent newer updates from being
installed, and partial-bundle installation
attacks disrupt update integrity by allowing
only parts of the update to be installed.
Deny Functionality: Attackers aim to
cause vehicle malfunction. Rollback attacks
trick an ECU into reinstalling outdated
software with known vulnerabilities, while
endless data attacks overwhelm an ECU
with excessive data, leading to storage

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 10 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Figure 3: Uptane Framework

overflows and system crashes. Mixed-bundle
attacks introduce system incompatibilities
by installing conflicting software versions
simultaneously, and mix-and-match attacks
use compromised keys to release harmful
software combinations.

Control: This involves scenarios where
attackers install their software on an
ECU, gaining complete control over its
functionality. This could allow attackers to
manipulate vehicle behaviors such as altering
speed controls, turning off safety features,
or engaging vehicle systems at unauthorized
times, presenting a significant threat to
passenger safety and vehicle integrity.
Uptane effectively addresses these threats
through a security architecture that includes
multiple layers of protection. Techniques
such as digital signatures for verification,
requiring numerous trusted sources for
update approval, and isolating the duties of
different ECUs enhance the security posture
of automotive OTA systems.

Despite its comprehensive security
measures, Uptane does not inherently protect

against attacks on the SSC or build systems.
This limitation has led to the development
of Scudo, an integration of in-toto and the
Uptane framework[42].

5.2. Scudo
Scudo is a framework that integrates

Uptane with the in-toto SSC security
framework, achieving end-to-end security
guarantees that span from the initial
development of automotive software to
its final delivery[4]. By merging Uptane’s
robust mechanisms for secure software
artifact delivery with in-toto’s comprehensive
supply chain verification during image
development, SCUDO creates a unified
threat model that addresses vulnerabilities at
both ends of the update process.

To implement SCUDO effectively, the
Uptane image repository is modified to
store in-toto metadata alongside traditional
software images, as shown in Figure 4[2].
When an image is uploaded, it must be
accompanied by its corresponding in-toto
metadata, which is recorded in the custom

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 11 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

In-toto Metadata

Image Repository’s Metadata

ECU Image & Director’s Repository’s Metadata

Figure 4: Scudo Framework

field of the image’s entry in the target’s
metadata. This ensures no ambiguity
regarding which in-toto metadata should be
used during the retrieval and verification.

Given the practical challenge of issuing
new metadata for every update, Uptane’s
delegation model is employed to enhance
scalability. This model assigns delegated
roles to sign the software image and its
associated in-toto link metadata. Delegated
roles help distribute the signing workload,
reducing the burden on the primary signing
authority, which ideally signs the in-toto
layouts and key artifacts using offline keys.
Once the Director repository selects and signs
the necessary target metadata, the vehicle
retrieves the images and their accompanying
metadata through the prescribed interfaces of
both repositories. The vehicle receives the
Uptane metadata from the Image repository,
the software image, and its in-toto metadata.
The Primary ECU then disseminates these to
secondary ECUs, which perform independent
in-toto verifications to ensure that the update
has not been tampered with, even if the
Primary ECU is compromised.

For each target image, the client must
install the corresponding in-toto layout, link
metadata, and keys, which are identified via
the custom field in the Uptane metadata.
These in-toto artifacts are downloaded and
verified by comparing their hashes with those
specified in the Uptane metadata, which
has been signed by either the Targets or
delegated roles. This dual verification
process extends Uptane’s secure delivery
properties to include the in-toto metadata,
ensuring that the software image and its
associated supply chain information are
authentic and untampered. Moore et al.
[42] implemented and evaluated Scudo in
collaboration with Toradex. The latter is
a manufacturer of embedded devices and
provided a real-world platform conducive
to testing the effectiveness of Scudo. The
implementation’s performance was gauged
using metrics from the Toradex deployment.
The verification process on the vehicle side
through Scudo adds a manageable overhead
of approximately 0.21 seconds per image,
validating Scudo’s feasibility for real-world
applications.

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 12 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Table 1: Metadata overhead on a vehicle of Scudo and
Uptane [42].

Setup Uptane Only Scudo

Uptane 297.65 KiB 958.76 KiB

in-toto - 6 KiB

Total 297.65 KiB 964.76 KiB

Overhead Percentage 0.155% 0.504%

Table 1 compares the metadata overhead
before and after implementing SCUDO. In
the original Uptane setup, the compressed
Uptane metadata deployed by Toradex
had a size of 297.65 KiB, accounting
for approximately 0.155% of the total
transmitted data (including both metadata and
images). After integrating SCUDO, which
incorporates in-toto metadata alongside
Uptane’s metadata, the total metadata size
increased to 964.76 KiB of which 958.76
KiB is attributable to Uptane and 6 KiB
to in-toto resulting in an overall overhead
percentage of about 0.504%. Although this
represents a roughly threefold increase in
metadata size compared to the pre-SCUDO
setup, the absolute increase remains minimal
relative to the size of the transmitted software
images. Despite these promising results,
the evaluation faced limitations due to the
singular use of the Toradex Colibri iMX7D
v1.1B board, which may only partially
reflect the diverse array of automotive
ECUs that differ significantly in hardware
capabilities and configurations. Additionally,
ECUs sometimes have limited storage and
processing capabilities, which can hinder the
deployment of Scudo since they may demand
additional storage and runtime resources that
are not practical for many systems.
This limitation shows that Scudo is very
effective in its tested environment. However,
its applicability across diverse automobile
circumstances may vary, which requires
further testing and adaptation to meet
broader industry needs.

Our proposed solution, GuixChain,
replaces the in-toto component within
the Scudo framework and builds on
the existing capabilities of the Uptane
framework, covering stages 2 – 4 (i.e., secure
transmission, verification, and installation) of
the update process. In addition, it introduces
an alternative approach to address the
enduring challenges in the software supply
chain.

6. GUIXCHAIN
GuixChain offers a combination of

technologies to enhance security and
traceability throughout development
to deployment. It integrates version
control systems, blockchain technology,
reproducible builds and software bill of
materials to fortify the SSC:
Git Integration: By tracking changes in
source code during software development,
Git ensures that every modification is logged,
providing an essential layer of documentation
and control. This setup secures the
code when integrated into the distributed
ledger provided by blockchain technology.
It enhances traceability and accountability,
ensuring that each transaction or change can
be independently verified and audited.
Blockchain Technology: As data is
recorded in a ledger, a blockchain [43]
records transactions between multiple
nodes, ensuring that each transaction can
be independently verified. It serves as an
immutable audit trail, ensuring that every
code change is permanently recorded and
verifiable, crucial for tracing the origins of
malicious components. This technology
fosters a transparent and immutable data
record maintained through consensus among
network participants, providing a robust
defense against tampering and malicious
alterations.
Guix for Reproducible Builds: Guix

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 13 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

emphasizes the importance of reproducible
builds [44], whereby the same source code
and build environment consistently yield
identical binary outputs. This process is
facilitated through strict control over the
build environment, including aspects such
as compilers and libraries. Guix’s approach
supports cross-compilation, generating
software for various target platforms, and
maintains transparency by defining all
build processes in plain Scheme code
[45]. Reproducible builds are crucial for
security because any deviation in the final
output indicates a potential compromise
or unauthorized modification in the build
process, such as malware injection. By
verifying that all builds produce the same
object code, we can confidently detect
anomalies and safeguard against tampering.
Software Bill of Materials (SBoM): In
response to growing concerns about software
security, US Executive Order 14028 [23],
issued in spring 2021, mandates significant
improvements in software development,
testing and distribution processes. This order
requires all software producers to provide
an up-to-date SBoM that includes details on
commercial, open-source, and off-the-shelf
software components. In addition to
emphasizing the importance of SBoM, Doug
Bush, the Army’s chief acquisition official,
issued a memo mandating the incorporation
of SBoM into new software-related contracts
by February 2025 [46]. This policy shift
highlights the critical role of SBoMs in
improving transparency and accountability in
SSCs, enabling better risk management and
response strategies against vulnerabilities.

The operational framework of GuixChain
is further enhanced by the development
of smart contracts that automate and
secure the build processes. These smart
contracts ensure that build operations are
triggered only by verified actions, such as
initiating the source code compilation, which

creates reproducible builds in a controlled
environment. This setup, as seen in Figure 5,
aims to mitigate the risk of attacks, which
would now require simultaneous corruption
across multiple systems, a significantly more
challenging feat than exploiting a single
vulnerability in an isolated system.

The objectives of GuixChain are as
follows:

Integrate Git with blockchain: Enhance the
security of code repositories by integrating
Git with blockchain to ensure traceability and
immutability in the software development
process.

Develop smart contracts for automated
code compilation: Create smart contracts
that automate the code compilation process,
ensuring that only verified actions can trigger
these operations.

Implement reproducible and deterministic
software builds: Establish a reproducible
build environment to produce deterministic
software builds, minimizing variations
and ensuring consistency across different
systems.

Create an SBoM: Implement a
comprehensive SBoM during compilation
to enhance transparency and security.
GuixChain implementation strategy is
grouped into 3 stages, they are :

6.1. Stage 1: Integrating Git with
Blockchain

This integration improves the security
of software supply chains by eliminating a
single point of failure. By reducing reliance
on centralized servers, the system mitigates
risks such as data loss or downtime from
threats including DDoS attacks, ransomware,
and other malware. The distributed ledger
acts as a redundant version control system,
complementing Git by addressing its
inherent limitations. While Git provides

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 14 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Transaction/Block

Git Commit 

Git Push

Trigger

Build Status

Node 1

Smart Contract

Guix , Artifacts 

Node 2

Smart Contract

Guix , Artifacts 

Node 3

Smart Contract

Guix, Artifacts 

Node 6

Smart Contract

Guix, Artifacts 

Node 5

Smart Contract

Guix, Artifacts

Node 4

Smart Contract

Guix, Artifacts

Ledger

Consensus algorithm 

Uptane Image Repo

Figure 5: GuixChain Framework

comprehensive versioning for source code
with features like branches, merges, and
history tracking, it lacks the immutability,
transparency, and distributed trust essential
in multi-stakeholder environments. The
immutable nature of the blockchain ledger
ensures that every change to the software is
transparent and verifiable, which is essential
for tracing the origins of any malicious
components. With this merger, we achieve
a system in which changes are tracked and
permanently recorded on a decentralized
ledger, enhancing auditability and security
throughout the supply chain [43].

After evaluating various blockchain
technologies, we selected Hyperledger
Fabric (HLF) due to its permission-based
architecture, modular design, and high
configurability [47], making it ideal for
secure SSC management. HLF is well-suited
for enterprise applications that require a
trusted network among known participants.
Its ability to facilitate private and confidential
transactions ensures that only the involved
parties can access transaction details, thus
maintaining privacy and confidentiality.
Additionally, HLF introduces the concept

of channels ,private sub-networks within the
larger network which enable specific groups
of participants to create separate transaction
ledgers accessible only to them.

HLF employs chaincode to define business
logic and automate processes. Chaincode
is comparable to smart contracts on other
blockchain platforms and can be written in
various programming languages such as Go,
JavaScript, TypeScript, and Java, offering
flexibility and customization. A smart
contract is encapsulated within a chaincode
and outlines the rules governing interactions
between different organizations in executable
code. These smart contracts define and
execute rules/logic on the blockchain in a
deterministic and decentralized manner. For
example, consider a smart contract function
recordCommit that accepts a Git commit
hash, timestamp, and author information,
and writes these details to the blockchain
ledger. Another function, verifyCommit,
can be used to compare a stored commit
hash with a newly submitted one to ensure
the integrity of the commit before triggering
further processes, such as automated builds.

Security features within the smart contract

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 15 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

prevent unauthorized access and ensure that
it can only be triggered by verified actions,
maintaining consistent input, output, and
ledger state. Each chaincode is associated
with an endorsement policy, which specifies
the organizations in the blockchain network
that must endorse a transaction generated
by a given smart contract to be considered
valid. The endorsement policy is crucial, as it
ensures that transactions meet the necessary
approval criteria before execution.

To validate our approach further, we
designed an experimental framework as part
of the overall GuixChain system to test the
complexity and performance of integrating
Git with HLF. This framework is an integral
component of GuixChain, used specifically
to evaluate performance metrics such as
synchronization time, consistency across
nodes, security robustness, and resource
utilization. We plan to explore three
scenarios:

First, the Independent Final Clone and
Commit Hash Storage scenario evaluates
the ability of each repository clone to operate
independently by securely storing commit
hashes on the blockchain. This ensures that
even if one node fails, the integrity of the
commit history is maintained.

Second, the Synchronized Repositories
with Differential Commit scenario tests
the synchronization of repositories that
have differing commit histories. This
scenario focuses on merging only the
differential commits, which is crucial for
ensuring consistency across nodes without
unnecessary redundancy or data transfer.

Third, the Automated Synchronization
with Direct Push scenario assesses the
automation of the synchronization process
by enabling direct push mechanisms. This
approach reduces manual intervention,
streamlines updates, and verifies that the
synchronization process is both secure and
efficient.

These experiments will comprehensively
evaluate the integrated system’s performance
and reliability, ensuring that the combined
solution of Git and Hyperledger Fabric
provides decentralized security and
redundancy for the automotive software
supply chain.

6.2. Stage 2: Enhancing
reproducibility with blockchain
and SBoM generation

Integrating blockchain with a reproducible
build environment such as Guix ensures
precise control over software environments,
supporting cross-compilation and producing
byte-for-byte identical outputs at each
network node. Smart contracts trigger
parallel builds across multiple nodes,
ensuring that outputs are bit-wise
identical and enhancing the build process’s
reproducibility and reliability. This setup
guarantees deterministic builds and provides
a transparent and auditable trail of all
software versions and their corresponding
builds [48].

An SBoM is generated in the compilation
phase along with the firmware. This
SBoM is parsed to catalog all materials
used in the firmware, enhancing security
during the consensus process. Here, images,
metadata, and SBoMs, collectively referred
to as artifacts in Figure 5, are hashed and
compared across all nodes. Transmission to
the Uptane image repository occurs only if
the hashes match across the nodes, ensuring
uniformity. Discrepancies in the output
hashes prevent the dispatch of the artifacts,
thereby safeguarding against unauthorized
modifications. This verification process
ensures that validated and consistent builds
are advanced to the deployment stage.

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 16 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

6.3. Stage 3: Integrating Guix with
the Uptane image repository

After the byte-wise comparison, the
artifact is transferred to the Uptane image
repository for storage. By requiring
consensus among multiple nodes prior to
transmission, the integrity of the artifacts
stored in the Uptane repository is better
protected. This stage provides a secure
location for end users to access and download
the build, which is then distributed to
the appropriate ECU using the Uptane
framework.

7. GUIXCHAIN THREAT MODEL
This section presents the GuixChain threat

model, which outlines some cybersecurity
risks that can compromise the software
development and deployment processes in
the automotive sector. These risks include
ransomware attacks, insider threats, and build
server compromises, each posing significant
threats to operational continuity.
Ransomware Attacks: Ransomware can
severely disrupt operations by encrypting key
software assets on build servers, thus halting
production and updates unless a ransom is
paid. Integrating blockchain with Git in
our GuixChain system ensures that every
software version and subsequent updates
are stored on an immutable ledger. This
redundancy allows for a swift reversion to
secure, pre-attack states, thus neutralizing the
impact of ransomware without necessitating
ransom payments.
Arbitrary Edits Attacks: Unauthorized
modifications, whether by insiders or
through compromised credentials, can
introduce vulnerabilities such as backdoors
into the software. GuixChain utilizes
blockchain to meticulously track and validate
every change made in the git repository.
Smart contracts ensure that changes are only
merged after passing security checks, making

unauthorized edits detectable and reversible.
Build Server Compromise: If attackers
gain control of the build server itself, they
could inject malicious code that would
propagate to every vehicle updated with
the compromised software. Our approach
uses deterministic builds triggered by smart
contracts, ensuring that the same source
code produces identical binary output across
different nodes. This consistency allows
for the detection of tampered binaries, as
any unauthorized modifications on the build
server would result in mismatched outputs
across nodes. Every build process is also
logged on the blockchain for enhanced
auditing and verification.
Malware Injection in the Build Process:
Beyond compromising the build server,
malicious code can also be introduced at
other points in the build process, such
as through infected dependencies or a
developer’s compromised environment. The
reproducible build environment guaranteed
by Guix ensures that any anomalies in
build outputs are immediately apparent
across multiple independent builds, allowing
for quick intervention before compromised
software is distributed. While a build server
compromise is one way malware can be
introduced, this category addresses a broader
range of injection vectors that might not
require direct control of the build server.

7.1. Differentiating GuixChain from
Existing Frameworks

GuixChain distinguishes itself from
existing solutions such as FISHY, SBOMs,
Sigstore, Grafeas, and in-toto (discussed
in Section 4) by integrating blockchain
technology with reproducible builds. While
each framework offers valuable security
features, GuixChain’s unique combination
addresses SSC threats.

As shown in Table 2, existing solutions
offer valuable security features tailored

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 17 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Solution Continuous
Monitoring

Artifact
Metadata
Management

Secure
Signing

Provenance
&
Integrity

Build
enviroment
Security

GuixChain ✓ ✓ ✓ ✓ ✓
FISHY ✓ ✗ ✗ ✓ ✗

SBOM ✗ ✓ ✗ ✓ ✗

Sigstore ✗ ✓ ✓ ✓ ✗

Grafeas ✗ ✓ ✓ ✓ ✗

In-toto ✗ ✓ ✓ ✓ ✗

Table 2: Comparison of Software Supply Chain
Frameworks

to specific aspects of the SSC. However,
GuixChain distinguishes itself by delivering
a comprehensive suite of capabilities,
especially the protection against build server
compromise. It ensures the immutability
and traceability of code changes, guarantees
that identical source code produces the same
binaries in parallel build environments and
ensures the correct image is sent to the
uptane repository.

FISHY focuses on securing Internet
of Things (IoT) components and ECUs
within vehicles. While FISHY provides
robust lifecycle protection, GuixChain
offers immutable, transparent, and verifiable
records of software changes and updates,
fostering a more decentralized trust model
not central to FISHY.

SBoMs provide detailed inventories of
software components. GuixChain enhances
traditional SBOM usage by embedding them
within a blockchain, creating an immutable
record. This adds an additional layer of
security, enabling package validation before
image deployment to the Uptane repository.

Sigstore and Grafeas offer solutions for
software signing and metadata management,
respectively. Sigstore simplifies software
artifact signing and verification, while
Grafeas provides granular control over
software artifact metadata. GuixChain goes
beyond artifact management by securing
the build environment itself and ensuring
reproducibility. This approach, which
encompasses both artifact and environment
security, surpasses the capabilities of Sigstore
and Grafeas by securing the entire software

development and deployment pipeline.

In-toto, similar to GuixChain, focuses
on securing the software supply chain
but focuses primarily on the integrity
of development steps. GuixChain
integrates these steps into a blockchain
environment, verifying products and
processes. GuixChain’s use of smart
contracts to automate and secure these
processes offers a proactive approach
to preventing unauthorized changes, a
capability beyond the current scope of the
in-toto.

Unlike traditional frameworks that often
rely on the integrity of a single build
server, GuixChain ensures identical binary
outputs from the same source inputs across
multiple build servers. This reproducibility
is crucial. Any unauthorized changes
or malicious code injections at the build
server level are automatically detectable. A
compromised build server that produces a
binary different from a secure environment
immediately reveals the discrepancy.

Guix’s reproducible builds, integrated
into GuixChain, extend verification beyond
simple artifact checking. By leveraging
blockchain, each build’s details are
immutably recorded, enabling traceability
and auditing of any deviation from the
expected binary output. This transparency
and accountability establish a robust
foundation of trust in the software delivery
process.

Furthermore, the deterministic nature of
these builds, combined with the blockchain’s
decentralized ledger, eliminates reliance on
individual build server security. This
mitigates the impact of single points of failure
and distributes trust across multiple nodes,
enhancing overall system resilience against
build infrastructure attacks.

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 18 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025



Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

7.2. Future Work
The potential of GuixChain, as outlined,

requires further empirical validation to fully
assess its viability and effectiveness. Future
work will focus on fully implementing this
proposed solution within a controlled
environment to evaluate its practical
implications and performance metrics.

8. CONCLUSION
This paper examined the challenges

confronting the software supply chain in the
automotive industry and evaluated existing
solutions such as the Uptane and Scudo
frameworks. Our analysis highlighted
the strengths and limitations of these
approaches, particularly in managing OTA
updates and ensuring the integrity of the
build environment.

We introduced GuixChain, a framework
that integrates blockchain, smart contracts,
SBoMs, and reproducible builds to address
these shortcomings in existing solutions. As
illustrated in Table 2, GuixChain uniquely
combines continuous monitoring, artifact
metadata management, secure signing,
provenance, and build environment security,
ensuring that every component within the
supply chain is transparently documented,
rigorously verified, and each software is
consistently reproduced across all nodes.

Our preliminary study underscores
the promising potential of GuixChain.
However, further empirical validation is
necessary to fully ascertain its performance,
scalability, and effectiveness against
emerging threats. Future work will focus on
full-scale implementation and comprehensive
framework evaluation. We are optimistic that
the continued development and refinement
of GuixChain will enhance the security of
automotive software systems, paving the way
for more resilient and trustworthy supply

chain practices.

References
[1] M. S. Melara and M. Bowman, “What

is software supply chain security?”
arXiv preprint arXiv:2209.04006,
2022.

[2] T. Karthik, Kuppusamy, and
D. McCoy, “Uptane: Securing
software updates for automobiles,”
2016. [Online]. Available: https :
/ / api . semanticscholar .
org/CorpusID:26794761.

[3] S. Torres-Arias, H. Afzali,
T. K. Kuppusamy, R. Curtmola,
and J. Cappos, “In-toto: Providing
farm-to-table guarantees for bits and
bytes,” in 28th USENIX Security
Symposium (USENIX Security 19),
2019, pp. 1393–1410.

[4] M. Moore, A. S. A. Yelgundhalli,
T. K. Kuppusamy, S. Torres-Arias,
L. A. DeLong, and J. Cappos, Scudo: A
proposal for resolving software supply
chain insecurities in vehicles, 2022.

[5] D. Spinellis, “Git,” IEEE software,
vol. 29, no. 3, pp. 100–101, 2012.

[6] B. Xia, T. Bi, Z. Xing, Q. Lu, and L.
Zhu, “An empirical study on software
bill of materials: Where we stand and
the road ahead,” 2023 IEEE/ACM 45th
International Conference on Software
Engineering (ICSE), pp. 2630–2642,
2023. [Online]. Available: https://
api . semanticscholar . org /
CorpusID:255825791.

[7] D. Arthur, C. Becker, A. Epstein,
B. Uhl, S. Ranville, et al.,
“Foundations of automotive software,”
United States. Department of
Transportation. National Highway
Traffic Safety . . ., Tech. Rep., 2022.

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 19 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025

https://api.semanticscholar.org/CorpusID:26794761
https://api.semanticscholar.org/CorpusID:26794761
https://api.semanticscholar.org/CorpusID:26794761
https://api.semanticscholar.org/CorpusID:255825791
https://api.semanticscholar.org/CorpusID:255825791
https://api.semanticscholar.org/CorpusID:255825791


Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

[8] A. Chawan, W. Sun, A. Javaid, and
U. Gurav, “Security enhancement
of over-the-air update for connected
vehicles,” in Wireless Algorithms,
Systems, and Applications: 13th
International Conference, WASA
2018, Tianjin, China, June 20-22,
2018, Proceedings 13, Springer, 2018,
pp. 853–864.

[9] S. S. Kute and S. D. Thorat, “A review
on various software development life
cycle (sdlc) models,” International
Journal of Research in Computer and
Communication Technology, vol. 3,
no. 7, pp. 778–779, 2014.

[10] Siemens, Oems, suppliers, and
how to use a program management
system, https : / / blogs . sw .
siemens . com / thought -
leadership / 2018 / 12 / 20 /
oems - suppliers - and -
how - to - use - a - program -
management-system/, Accessed:
2024-04-27, Dec. 2018.

[11] CMSTAT, Configuration management
across multi-site aerospace & defense
suppliers – part 1, https : / /
cmstat . com / cmsights -
news-posts/configuration-
management- across- multi-
site - aerospace - defense -
suppliers - part - 1, Accessed:
2024-04-27, Dec. 2020.

[12] J. J. Martinez and J. M. Durán,
“Software supply chain attacks,
a threat to global cybersecurity:
Solarwinds’ case study,” International
Journal of Safety and Security
Engineering, 2021. [Online].
Available: https : / / api .
semanticscholar . org /
CorpusID:244056951.

[13] P. Ferreira, F. Caldeira, P. Martins,
and M. Abbasi, “Log4j vulnerability,”
in International Conference on
Information Technology & Systems,
Springer, 2023, pp. 375–385.

[14] S. Snider, “Massive okta breach: What
cisos should know,” InformationWeek,
Dec. 2023, Accessed: February 18,
2025. [Online]. Available: https://
www . informationweek . com /
cyber-resilience/massive-
okta - breach - what - cisos -
should-know.

[15] D. Bradbury, “Tracking unauthorized
access to okta’s support system,”
Okta Security Blog, Oct. 2023,
Accessed: February 18, 2025.
[Online]. Available: https://sec.
okta . com / articles / 2023 /
10/tracking-unauthorized-
access - oktas - support -
system/.

[16] D. Bradbury, “Okta october 2023
security incident investigation
closure,” Okta Security Blog, Feb.
2024, Accessed: February 18,
2025. [Online]. Available: https :
//sec.okta.com/articles/
harfiles/.

[17] Sonatype, 9th annual software
supply chain, , [Online; accessed
04-October-2024], 2023.

[18] K. Grimm, “Software technology
in an automotive company - major
challenges,” 25th International
Conference on Software Engineering,
2003. Proceedings., pp. 498–503,
2003. DOI: 10.1109/ICSE.2003.
1201228.

[19] M. Broy, “Challenges in automotive
software engineering,” Proceedings
of the 28th international conference
on Software engineering, 2006.

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 20 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025

https://blogs.sw.siemens.com/thought-leadership/2018/12/20/oems-suppliers-and-how-to-use-a-program-management-system/
https://blogs.sw.siemens.com/thought-leadership/2018/12/20/oems-suppliers-and-how-to-use-a-program-management-system/
https://blogs.sw.siemens.com/thought-leadership/2018/12/20/oems-suppliers-and-how-to-use-a-program-management-system/
https://blogs.sw.siemens.com/thought-leadership/2018/12/20/oems-suppliers-and-how-to-use-a-program-management-system/
https://blogs.sw.siemens.com/thought-leadership/2018/12/20/oems-suppliers-and-how-to-use-a-program-management-system/
https://blogs.sw.siemens.com/thought-leadership/2018/12/20/oems-suppliers-and-how-to-use-a-program-management-system/
https://cmstat.com/cmsights-news-posts/configuration-management-across-multi-site-aerospace-defense-suppliers-part-1
https://cmstat.com/cmsights-news-posts/configuration-management-across-multi-site-aerospace-defense-suppliers-part-1
https://cmstat.com/cmsights-news-posts/configuration-management-across-multi-site-aerospace-defense-suppliers-part-1
https://cmstat.com/cmsights-news-posts/configuration-management-across-multi-site-aerospace-defense-suppliers-part-1
https://cmstat.com/cmsights-news-posts/configuration-management-across-multi-site-aerospace-defense-suppliers-part-1
https://cmstat.com/cmsights-news-posts/configuration-management-across-multi-site-aerospace-defense-suppliers-part-1
https://api.semanticscholar.org/CorpusID:244056951
https://api.semanticscholar.org/CorpusID:244056951
https://api.semanticscholar.org/CorpusID:244056951
https://www.informationweek.com/cyber-resilience/massive-okta-breach-what-cisos-should-know
https://www.informationweek.com/cyber-resilience/massive-okta-breach-what-cisos-should-know
https://www.informationweek.com/cyber-resilience/massive-okta-breach-what-cisos-should-know
https://www.informationweek.com/cyber-resilience/massive-okta-breach-what-cisos-should-know
https://www.informationweek.com/cyber-resilience/massive-okta-breach-what-cisos-should-know
https://sec.okta.com/articles/2023/10/tracking-unauthorized-access-oktas-support-system/
https://sec.okta.com/articles/2023/10/tracking-unauthorized-access-oktas-support-system/
https://sec.okta.com/articles/2023/10/tracking-unauthorized-access-oktas-support-system/
https://sec.okta.com/articles/2023/10/tracking-unauthorized-access-oktas-support-system/
https://sec.okta.com/articles/2023/10/tracking-unauthorized-access-oktas-support-system/
https://sec.okta.com/articles/harfiles/
https://sec.okta.com/articles/harfiles/
https://sec.okta.com/articles/harfiles/
https://doi.org/10.1109/ICSE.2003.1201228
https://doi.org/10.1109/ICSE.2003.1201228


Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

[Online]. Available: https :
/ / api . semanticscholar .
org/CorpusID:207159040.

[20] J. Soriano, G. Jiménez, E. Correa,
and N. Ruiz, “Challenges in the
automotive software supply chain,
connected car : Benefits from an
intent policy framework,” 2021
IEEE 22nd International Conference
on High Performance Switching
and Routing (HPSR), pp. 1–5,
2021. [Online]. Available: https :
/ / api . semanticscholar .
org/CorpusID:236151472.

[21] W. Enck and L. Williams, “Top
five challenges in software supply
chain security: Observations from
30 industry and government
organizations,” IEEE Security &
Privacy, vol. 20, no. 2, pp. 96–100,
2022.

[22] M. Broy, I. Krüger, A. Pretschner,
and C. Salzmann, “Engineering
automotive software,” Proceedings of
the IEEE, vol. 95, pp. 356–373, 2007.
DOI: 10 . 1109 / JPROC . 2006 .
888386.

[23] The White House, Executive
order 14028 on improving the
nation’s cybersecurity, https :
/ / www . whitehouse .
gov / briefingroom /
presidential - actions /
2021 / 05 / 12 / executive -
order - on - improving -
thenations-cybersecurity/,
[Online; published 12-May-2021,
accessed 24-Mar-2024], May 2021.

[24] J. Soriano, G. Jiménez, E. Correa,
and N. Ruiz, “Challenges in the
automotive software supply chain,
connected car : Benefits from an intent
policy framework,” 2021 IEEE 22nd

International Conference on High
Performance Switching and Routing
(HPSR), pp. 1–5, 2021. DOI: 10 .
1109 / HPSR52026 . 2021 .
9481853.

[25] OpenSSF, Open source security
foundation, https://openssf.
org/, Accessed: 2024-04-27, 2024.

[26] P. Buxmann, A. V. Ahsen, L. Dı́az,
and K. Wolf, “Usage and evaluation
of supply chain management software
– results of an empirical study in
the european automotive industry,”
Information Systems Journal, vol. 14,
2004. DOI: 10 . 1111 / j . 1365 -
2575.2004.00172.x.

[27] M. Hossfeld, C. Ackermann, and
C. Griffy-Brown, “A cyberphysical
vehicle platform for the mobility
of the future—creating new value
networks and business models,” IEEE
Engineering Management Review,
vol. 49, pp. 99–107, 2021. DOI:
10.1109/emr.2021.3117149.

[28] M. Fourné, D. Wermke, W. Enck,
S. Fahl, and Y. G. Acar, “It’s like
flossing your teeth: On the importance
and challenges of reproducible builds
for software supply chain security,”
2023 IEEE Symposium on Security
and Privacy (SP), pp. 1527–1544,
2023. [Online]. Available: https://
api . semanticscholar . org /
CorpusID:259371795.

[29] W. Scacchi and T. A. Alspaugh,
“Securing software ecosystem
architectures: Challenges and
opportunities,” IEEE Software,
vol. 36, pp. 33–38, 2019. [Online].
Available: https : / / api .
semanticscholar . org /
CorpusID:131776365.

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 21 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025

https://api.semanticscholar.org/CorpusID:207159040
https://api.semanticscholar.org/CorpusID:207159040
https://api.semanticscholar.org/CorpusID:207159040
https://api.semanticscholar.org/CorpusID:236151472
https://api.semanticscholar.org/CorpusID:236151472
https://api.semanticscholar.org/CorpusID:236151472
https://doi.org/10.1109/JPROC.2006.888386
https://doi.org/10.1109/JPROC.2006.888386
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://www.whitehouse.gov/briefingroom/presidential-actions/2021/05/12/executive-order-on-improving-thenations-cybersecurity/
https://doi.org/10.1109/HPSR52026.2021.9481853
https://doi.org/10.1109/HPSR52026.2021.9481853
https://doi.org/10.1109/HPSR52026.2021.9481853
https://openssf.org/
https://openssf.org/
https://doi.org/10.1111/j.1365-2575.2004.00172.x
https://doi.org/10.1111/j.1365-2575.2004.00172.x
https://doi.org/10.1109/emr.2021.3117149
https://api.semanticscholar.org/CorpusID:259371795
https://api.semanticscholar.org/CorpusID:259371795
https://api.semanticscholar.org/CorpusID:259371795
https://api.semanticscholar.org/CorpusID:131776365
https://api.semanticscholar.org/CorpusID:131776365
https://api.semanticscholar.org/CorpusID:131776365


Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

[30] C. Lamb and S. Zacchiroli,
“Reproducible builds: Increasing
the integrity of software supply
chains,” IEEE Software, vol. 39, no. 2,
pp. 62–70, 2021.

[31] Z. Newman, J. S. Meyers,
and S. Torres-Arias, “Sigstore:
Software signing for everybody,”
Proceedings of the 2022 ACM
SIGSAC Conference on Computer
and Communications Security,
2022. [Online]. Available: https :
/ / api . semanticscholar .
org/CorpusID:253371237.

[32] Sap integrated business planning
(ibp), https : / / www . sap .
com / products / integrated -
business - planning . html,
Accessed: 2025-02-27, 2023.

[33] Oracle scm cloud, https://www.
oracle . com / scm/, Accessed:
2025-02-27, 2023.

[34] Siemens teamcenter, https :
/ / www . plm . automation .
siemens . com / global / en /
products / teamcenter/,
Accessed: 2025-02-27, 2023.

[35] Ptc windchill, https://www.ptc.
com/en/products/windchill,
Accessed: 2025-02-27, 2023.

[36] T. Bi, B. Xia, Z. Xing, Q. Lu,
and L. Zhu, “On the way to
sboms: Investigating design issues
and solutions in practice,” ACM
Transactions on Software Engineering
and Methodology, 2023. [Online].
Available: https : / / api .
semanticscholar . org /
CorpusID:258332158.

[37] M. Mirakhorli, D. Garcia, S. Dillon,
et al., “A landscape study of open
source and proprietary tools for

software bill of materials (sbom),”
ArXiv, vol. abs/2402.11151, 2024.
[Online]. Available: https :
/ / api . semanticscholar .
org/CorpusID:267750339.

[38] Y.-C. Chang, “How to use sigstore
without sigstore,” IACR Cryptol.
ePrint Arch., vol. 2023, p. 3, 2023.
[Online]. Available: https :
/ / api . semanticscholar .
org/CorpusID:256361482.

[39] Grafeas, Grafeas: The artifact
metadata api, https://grafeas.
io/, Accessed: 2024-04-27, 2024.

[40] Uptane, Uptane: Secure over-the-air
software updates for automotive,
https : / / uptane . org/,
Accessed: 2024-04-27, 2024.

[41] J. Samuel, N. Mathewson, J. Cappos,
and R. Dingledine, “Survivable key
compromise in software update
systems,” in Proceedings of the
17th ACM conference on Computer
and communications security, 2010,
pp. 61–72.

[42] M. Moore, A. S. A. Yelgundhalli, and
J. Cappos, “Securing automotive
software supply chains,” in
Proceedings of the Network and
Distributed Systems Security
Symposium (NDSS) 2024, San
Diego, CA, USA, 2024. [Online].
Available: https://www.ndss-
symposium.org/wp-content/
uploads / vehiclesec2024 -
15-paper.pdf.

[43] K. R. K. Reddy, A. Gunasekaran,
P. Kalpana, V. R. Sreedharan,
and S. A. Kumar, “Developing
a blockchain framework for the
automotive supply chain: A systematic
review,” Computers & Industrial

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 22 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025

https://api.semanticscholar.org/CorpusID:253371237
https://api.semanticscholar.org/CorpusID:253371237
https://api.semanticscholar.org/CorpusID:253371237
https://www.sap.com/products/integrated-business-planning.html
https://www.sap.com/products/integrated-business-planning.html
https://www.sap.com/products/integrated-business-planning.html
https://www.oracle.com/scm/
https://www.oracle.com/scm/
https://www.plm.automation.siemens.com/global/en/products/teamcenter/
https://www.plm.automation.siemens.com/global/en/products/teamcenter/
https://www.plm.automation.siemens.com/global/en/products/teamcenter/
https://www.plm.automation.siemens.com/global/en/products/teamcenter/
https://www.ptc.com/en/products/windchill
https://www.ptc.com/en/products/windchill
https://api.semanticscholar.org/CorpusID:258332158
https://api.semanticscholar.org/CorpusID:258332158
https://api.semanticscholar.org/CorpusID:258332158
https://api.semanticscholar.org/CorpusID:267750339
https://api.semanticscholar.org/CorpusID:267750339
https://api.semanticscholar.org/CorpusID:267750339
https://api.semanticscholar.org/CorpusID:256361482
https://api.semanticscholar.org/CorpusID:256361482
https://api.semanticscholar.org/CorpusID:256361482
https://grafeas.io/
https://grafeas.io/
https://uptane.org/
https://www.ndss-symposium.org/wp-content/uploads/vehiclesec2024-15-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/vehiclesec2024-15-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/vehiclesec2024-15-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/vehiclesec2024-15-paper.pdf


Proceedings of the 2025 Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS)

Engineering, vol. 157, p. 107 334,
2021.

[44] Reproducible builds, https : / /
reproducible - builds . org/,
[Online; accessed August 2024].

[45] G. Guix, Gnu guix, https : / /
guix . gnu . org/, Accessed:
2024-08-27, 2024.

[46] Department of the Army, Office
of the Assistant Secretary of the
Army (Acquisition, Logistics and
Technology), Assistant secretary
of the army (acquisition, logistics
and technology) software bill of
materials policy, Memorandum,
SAAL-ZE, 103 Army Pentagon,
Washington, DC 20310-0103,
Memorandum for See Distribution,
n.d. [Online]. Available: https :
//federalnewsnetwork.com/
wp- content/uploads/2024/
09/081624_Army_SBOM_Memo.
pdf.

[47] E. Androulaki, A. Barger,
V. Bortnikov, et al., “Hyperledger
fabric: A distributed operating system
for permissioned blockchains,”
in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys
’18, Porto, Portugal: Association for
Computing Machinery, 2018, ISBN:
9781450355841. DOI: 10 . 1145 /
3190508 . 3190538. [Online].
Available: https : / / doi . org /
10.1145/3190508.3190538.

[48] L. Courtès, “Building a secure
software supply chain with gnu guix,”
arXiv preprint arXiv:2206.14606,
2022.

9. CONTACT INFORMATION
Iwinosa Aideyan
Ph.D. Student, Computer Engineering

Holcombe Department of Electrical and
Computer Engineering
Clemson University
Riggs Hall
Clemson, SC.
iaideya@clemson.edu

10. ACKNOWLEDGMENT
This work was supported by Clemson

University’s Virtual Prototyping of
Autonomy Enabled Ground Systems
(VIPR-GS), under Cooperative Agreement
W56HZV-21-2-0001 with the US Army
DEVCOM Ground Vehicle Systems Center
(GVSC).

11. ACRONYMS

ECU Electronic Control Unit
SSC Software Supply Chain
OEM Original Equipment Manufacturer
SBoM Software Bill of Material
TCU Telematic Control Unit
UDS Unified Diagnostic Services
OBD Onboard Diagnostic
SDLC Software Development Lifecycle
SDV Software Defined Vehicle
JNDI Java Naming and Directory Interface
OIDC OpenID Connect
CLI Command-Line Interface
HLF Hyperledger Fabric

Advancing Automotive Software Supply Chain Security: A Blockchain-Reproducible Build
Approach, Iwinosa Aideyan, et al. Page 23 of 23

Downloaded from SAE International by Clemson University Libraries, Monday, September 29, 2025

https://reproducible-builds.org/
https://reproducible-builds.org/
https://guix.gnu.org/
https://guix.gnu.org/
https://federalnewsnetwork.com/wp-content/uploads/2024/09/081624_Army_SBOM_Memo.pdf
https://federalnewsnetwork.com/wp-content/uploads/2024/09/081624_Army_SBOM_Memo.pdf
https://federalnewsnetwork.com/wp-content/uploads/2024/09/081624_Army_SBOM_Memo.pdf
https://federalnewsnetwork.com/wp-content/uploads/2024/09/081624_Army_SBOM_Memo.pdf
https://federalnewsnetwork.com/wp-content/uploads/2024/09/081624_Army_SBOM_Memo.pdf
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538

	Introduction
	Background
	Challenges of Securing the Automotive Software Supply Chain
	SSC Frameworks applicable to Automotive Industry
	Automotive OTA Updates
	The Uptane Framework
	Scudo

	GuixChain
	Stage 1: Integrating Git with Blockchain
	Stage 2: Enhancing reproducibility with blockchain and SBoM generation
	Stage 3: Integrating Guix with the Uptane image repository

	GuixChain Threat Model
	Differentiating GuixChain from Existing Frameworks
	Future Work

	Conclusion
	Contact Information
	Acknowledgment
	Acronyms

