
2024-01-2795	 Published 09 Apr 2024

Abstract

Robust communications are crucial for autonomous 
military fleets. Ground vehicles function as mobile 
local area networks utilizing Controller Area Network 

(CAN) backbones. Fleet coordination between autono-
mous platforms relies on the Robot Operating System 
(ROS) publish/subscribe robotic middleware for effective 
operation. To bridge communications between the CAN 
and ROS network segments, the CAN2ROS bridge 
software supports bidirectional data flow with message 
mapping and node translation.

Fuzzing, a software testing technique, involves 
injecting randomized data inputs into the target system. 
This method plays a pivotal role in identifying vulnerabili-
ties. It has proven effective in discovering vulnerabilities 
in online systems, such as the integrated CAN/ROS 
system. In our study, we consider ROS implementing 
zero-trust access control policies, running on a Gazebo 
test-bed connected to a CAN bus. Our objective is to 
evaluate system security using fuzzers in three scenarios: 

(i) fuzzing the CAN bus alone, (ii) fuzzing the CAN bus with 
a ROS Fuzzer, and (iii) fuzzing both systems simultane-
ously using the CAN2ROS bridge.

This paper poses the question: is fuzzing the unified 
system more effective than fuzzing individual compo-
nents. By analyzing interactions between the bridge 
and the military fleets’ CAN systems, we identify and 
address flaws potentially introduced in the software, or 
data leakage between communication segments. Our 
analysis employs experimental design and statistical 
analysis to shed light on the bridge’s security robustness 
and its potential implications for the overall system’s 
integrity.

This research holds significant implications for both 
industry and academia. Stakeholders involved in the 
development of autonomous military and civilian fleets 
can leverage our findings to enhance system security and 
reliability. Ultimately, the identification and mitigation of 
vulnerabilities contribute to safer and more resilient 
military operations.

Introduction

In the domain of autonomous military fleets and 
unmanned systems, maintaining robust and resilient 
communications within vehicles is vital for their safe 

and effective operation. This paper delves into the concept 
of threat modelling and analyzing a vehicle’s attack 
surface to uncover potential attack possibilities. Attack 
paths are identified from the attack surface, describing 
routes an attacker may take from a point of entry to 
target components, highlighting potential points of exploi-
tation [1]. Recent developments in automated red teaming 
have seen fuzzing techniques emerge as powerful tools 
for detecting and preventing security flaws across various 
attack surfaces[1]. Fuzzing, a dynamic and automated 
software testing technique, plays a crucial role in discov-
ering vulnerabilities and security weaknesses in target 
systems. The primary objective of fuzzing in this context 
is to identify potential points of exploitation, such as 
software vulnerabilities, which malicious actors could 
leverage to gain unauthorized access or compromise the 

target system. Autonomous military fleets and unmanned 
systems utilize diverse communication technologies, 
including Controller Area Network (CAN), Local 
Interconnect Network (LIN), Automotive Ethernet, FlexRay, 
and ROS-Military. Existing literature has shed light on the 
fundamental aspects of vehicle network communication; 
however, it has not fully explored the possible connection 
from the robotic middle ware (ROS) of autonomous 
ground vehicles to the CAN bus. The CAN bus serves as 
an essential communication backbone enabling various 
Electronic Control Units (ECUs) to share sensor data, 
control commands, and other vital information to coor-
dinate the vehicle’s autonomous operation. This connec-
tion presents a potential attack surface that needs careful 
consideration. This research aims to address this gap by 
focusing on the automated discovery of security flaws in 
vehicle fleets, particularly investigating an integrated 
CAN-to-ROS system. We employ fuzzing techniques to 
evaluate the robustness and security of both the CAN 

Received: 20 Oct 2023	 Revised: 29 Jan 2024		 Accepted: 05 Feb 2024

Fuzzing CAN vs. ROS: An Analysis of Single-Component vs. 
Dual-Component Fuzzing of Automotive Systems
Iwinosa Winifred Aideyan, Richard Brooks, and Mert D. Pese  Clemson University

Citation: Aideyan, I. W., Brooks, R., and Pese, M.D.,“Fuzzing CAN vs. ROS: An Analysis of Single-Component vs. Dual-Component Fuzzing 
of Automotive Systems,” SAE Technical Paper 2024-01-2795, 2024, doi:10.4271/2024-01-2795.



	 2 FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

bus and ROS network, with access control policies consid-
ered for added security measures.

The paper structure is as follows: Section 2 provides 
an overview of existing work and related technologies, 
including CAN, ROS, Fuzzing, and the CAN-to-ROS bridge. 
Section 3 delves into the overall network model and 
design choices for implementing test-beds for autono-
mous fleets, covering aspects such as CAN bus and ROS1 
Gazebo test beds, data transmission, and the mapping 
algorithm translator node. Section 4 evaluates the perfor-
mance of the proposed approach, presenting experi-
mental results. We conclude with section 5, a discussion 
of the findings takes place, and the paper concludes by 
summarizing the results.

Background
Autonomous military fleets and unmanned systems are 
revolutionizing modern military operations, with applica-
tions spanning reconnaissance, surveillance, logistics, and 
more. These technologies enhance operational efficiency 
and reduce personnel risk by eliminating human presence 
in hazardous or challenging environments. However, the 
use of these systems in combat roles is a subject of 
ongoing debate, particularly in light of US doctrine, which 
emphasizes human decision-making in the use of lethal 
force. This aspect remains a controversial and ethically 
complex area in the evolution of military technology [2]. 
Autonomous military fleets, comprising interconnected 
vehicles, leverage advanced sensors, AI algorithms, and 
communication protocols to enable coordinated and 
synchronized actions and, it is crucial to have a compre-
hensive understanding of threat modeling. The latter is 
a structured approach that evaluate vulnerabilities of a 
vehicle’s attack surface. By identifying and analyzing 
attack paths, threat modeling helps uncover how mali-
cious actors could exploit the system. This analysis traces 
an attacker’s trajectory from their initial point of entry 
into the system, through internal networks, and ultimately 
to specific target components. By conducting this intricate 
analysis, valuable insights can be gained to fortify the 
system against emerging threats [3].

In-Vehicle Network 
Communication Technologies
In military autonomous ground vehicles, specialized 
internal communication networks serves as the backbone 
that interconnects components within the vehicle. These 
networks are designed to meet demands, such as the 
guaranteed delivery of messages and the prevention of 
message conflicts. Vehicle network communication tech-
nologies used by military autonomous ground vehicles 
include standards such as the Controller Area Network 
(CAN), Local Interconnect Network (LIN), Automotive 
Ethernet, and FlexRay. These technologies provide robust 
and secure communication across the intricate landscape 

of a military autonomous vehicle. The Robot Operating 
System (ROS) adds to vehicles’ communication 
capabilities.

Controller Area Network
The Controller Area Network (CAN) is a widely adopted 
communication protocol designed for robust and reliable 
data exchange between electronic components in vehicles 
and industrial systems. CAN operates on a message-
based communication model, where devices connected 
to the network transmit and receive messages, referred 
to as “CAN frames. The frames include the message 
identifier (ID), data payload, and control bits, which allow 
vehicle to distinguish and prioritize messages. This proto-
col’s efficacy stems from its capacity to support multiple 
devices on the same network without a centralized 
controller. CAN and its associated frame structure are 
part of modern autonomous vehicle networks, fostering 
inter-component communication critical for operation of 
these advanced vehicles.

Figure 1 depicts a CAN data frame, which is used for 
reliable data transmission between nodes on a CAN bus. 
The respective fields are explained as follows:

•• SOF (Start of Frame): This is a 1-bit field that marks 
the beginning of a new CAN frame, indicating the 
start of data transmission on the network.

•• CAN ID: This field uses the CAN 2.0A standard 11-bit 
(or 29-bit in CAN2.0B) message identifier for 
arbitration, setting the priority of the data frame and 
it allows for up to 2048 different CAN IDs.

•• RTR (Remote Transmission Request): This 1-bit field 
distinguishes between data frames and remote 
frames, indicating whether it is a data frame or a 
request for data from other nodes.

•• Control: This field typically contains defined bits and 
additional control information, including the IDE 
(Identifier Extension) bit. This bit, when dominant, set 
to 0, defines the 11-bit standard identifier, while 
when recessive, defines the 29-bit extended 
identifier. It indicates the identifier format 
being used.

•• DLC (Data Length Code): DLC stands for Data 
Length Code and is 4 bits in length. It defines the 
data length in the data field, indicating how many 
bytes of data are present.

  FIGURE 1    CAN Message Format



	 3� FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

•• Data: The data field can contain up to 8 bytes of 
actual data, which are transmitted between nodes 
on the CAN bus.

•• CRC (Cyclic Redundancy Check) Field: This 15-bit field 
is used to detect any corruption during data 
transmission, helping ensure data integrity.

•• ACK (Acknowledgment) Field: In CAN, 
acknowledgment is handled within the frame itself. 
Successful receipt and validation of the data frame 
result in an ACK bit being sent to acknowledge 
receipt, while the absence of an ACK indicates an 
error. Wired-AND logic requires at least one receiver 
to transmit a 0 to acknowledge CAN frame receipt, 
and if no receiver acknowledges the frame, the 
transmitter re transmits it.

•• EOF (End of Frame): This field consists of 7 
consecutive recessive bits known as “End of Frame”, 
marking the end of the CAN frame and preparing 
the network for the next frame.

Robot Operating System
The Robot Operating System (ROS) serves as a middle-
ware that enables coordination between robotic systems 
and vehicle components. ROS is an open-source operating 
system for robotics that provides tools and libraries for 
creating applications. It runs as nodes, which communi-
cate through a publisher/subscriber scheme. This scheme 
handling low-level interactions. By providing a framework 
for modular software development, ROS facilitates the 
creation of autonomous systems.

ROS provides services, such as communication among 
processes, hardware abstraction, low-level device control, 
and package management, for a heterogeneous computer 
cluster. Nodes in a graph architecture, conduct processing 
and may receive, publish, and manipulate perception, 
control, and other messages, as in Figure 2. Although not 
a real-time operating system, it is possible to integrate 
ROS with real-time code. Specifically, ROS1, the earlier 
version of ROS, introduced tools and libraries for robotic 
applications, fostering collaborative development within 
the robotics community. ROS2, the successor to ROS1, 
addresses its limitations and enhances real-time perfor-
mance, security, and additional platform support [4].

ROS uses a standardized message format to facilitate 
communication between nodes (software modules). The 
ROS message format is flexible and extensible. The 
syntax is:

•• Message Name: Each ROS message has a name 
that describes its purpose or content.

•• Message Type: ROS messages are strongly typed, 
meaning they have a specific data type associated 
with them. Common data types include integers, 
floats, strings, arrays, and custom user-
defined types.

•• Message Fields: Messages consist of one or more 
fields, each with a name and a data type. These 
fields store the actual information being 
communicated. Let us assume that these fields are 
responsible for storing the velocity information 
necessary to control the robotic system’s motion. 
For instance, a custom message contains the 
following fields:
linear float32 x float32 y float32 z
Angular float32 x float32 y float32 z

•• Header: Many ROS messages include a standard 
“header” field that contains metadata such as a 
timestamp and frame ID. This header is useful for 
tracking when the message was generated and in 
which coordinate frame it applies.

Vehicle Hardware Abstraction 
Layer
The Vehicle Hardware Abstraction Layer (VHAL) serves 
as an intermediary layer that abstracts and standardizes 
the interaction between various hardware components, 
sensors, and control systems in a vehicle. Essentially, 
VHAL acts as a unifying interface, providing a consistent 
and high-level opportunity for software applications and 
vehicle control systems to communicate with and control 
the diverse hardware elements in an automobile. This 
abstraction layer streamlines software development, 
testing, and integration processes, fostering compatibility 
and interoperability across different vehicle platforms and 
facilitating advanced automotive research endeavors. It 
acts like a bridge that helps different parts of a car’s 
computer systems communicate and work together.

The socketcan bridge package in ROS uses the 
VHAL concept. It serves as a bridge between the ROS 
ecosystem and the CAN bus, allowing for communication 
and control of the vehicle’s hardware components. While 
it may not encompass all aspects of VHAL, it abstracts 
and standardizes the interaction between ROS-based 
software and the CAN bus hardware, helping facilitate 
communication, data exchange, and control between 
these two systems in the context of a vehicle.

The socketcan bridge and ROS-to-CAN Translator 
play pivotal roles in bridging the communication gap 
between the CAN protocol and the ROS environment. 
The socketcan bridge serves as a vital link by enabling 
direct communication between the CAN hardware and 
ROS nodes. On the other hand, the ROS-to-CAN Translator 
node assumes the role of a translator, facilitating bidirec-
tional data flow between the CAN and ROS worlds. This 
bridge is instrumental in mapping CAN messages to ROS 
message types and vice versa, allowing seamless infor-
mation exchange and synchronization. The utilization of 

  FIGURE 2    ROS Publisher and Subscriber



	 4 FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

these packages effectively empowers ROS-enabled 
autonomous vehicles to harness the capabilities of CAN 
communication within the ROS ecosystem.

Importance of CAN-to-ROS 
Integration
The integration of the Controller Area Network (CAN) bus 
and the Robot Operating System (ROS) holds significant 
importance in autonomous military fleets and unmanned 
systems. This fusion of communication frameworks 
bridges the gap between hardware-level communication 
of the CAN bus and higher-level functionalities facilitated 
by ROS, unlocking numerous advantages while presenting 
challenges. The integration facilitates seamless data 
exchange, robust control and coordination, enhanced 
perception and decision-making, modularity and scal-
ability, unified communication, modularity and reusability, 
and sensor fusion and decision making.

By integrating CAN bus with ROS, the communication 
landscape is unified, streamlining data flow across sensors, 
actuators, and control units, enhancing vehicle efficiency 
and responsiveness. ROS offers a modular architecture 
for software development, allowing developers to create 
ROS nodes that communicate seamlessly with CAN-based 
hardware, enhancing code reusability and accelerating 
the development of new functionalities critical in dynamic 
military operations. Overall, the integration of CAN bus 
and ROS can enhance the overall vehicle’s autonomy and 
safety, ensuring a seamless and efficient communication 
system for autonomous military fleets. The synergistic 
integration of the Robot Operating System (ROS) with 
the structured CAN frame framework yields a powerful 
combination that greatly enhances the capabilities of 
vehicle networks in the context of autonomous opera-
tions. This integration facilitates the seamless coordina-
tion of diverse components within the vehicle, culminating 
in the realization of efficient and sophisticated autono-
mous systems.

Fuzzing and its role in security 
testing
Fuzzing has been a popular technique for discovering 
software security vulnerabilities since the early 1990s. It 
involves repeatedly running a program with generated 
inputs that may be syntactically or semantically malformed. 
Fuzz testing is a software testing technique that uses 
fuzzing to find security-related bugs in a program under 
test (PUT), including program crashes [5]. It has a specific 
goal of finding bugs that violate a specific security policy, 
such as program crashes.

The taxonomy of fuzzers is divided into three groups 
based on the granularity of semantics a fuzzer observes 
in each fuzz run. These groups are called black-, grey-, 
and white-box fuzzers. Black-box fuzzers are techniques 
that do not see the internals of the PUT, treating it as a 
black-box. White-box fuzzers generate test cases by 

analyzing the internals of the PUT and the information 
gathered when executing the PUT [6]. Additionally, fuzzing 
can be performed at different levels of the software stack, 
from the application layer down to the network protocols, 
providing a comprehensive assessment of the system’s 
security and reliability.

Related Work
Elmadani et al. [7] focus on decoding CAN bus messages 
and the development of a ROS-based package 
(CAN-to-ROS) for real-time and offline monitoring and 
decoding showcases a crucial step toward harnessing the 
wealth of information present in CAN messages. By lever-
aging the strengths of the Robot Operating System (ROS), 
the paper effectively addresses the need for modularity, 
ease of integration, and diverse language compatibility. 
The approach of integrating the CAN-to-ROS package 
with the libpanda library facilitates real-time data access 
and decoding presents a practical solution for working 
with CAN bus data from actual vehicles. Moreover, the 
successful evaluation and testing of the package on a 
Raspberry Pi using real CAN bus data from a Toyota RAV4 
shows its viability for real-world scenarios. Specifically, 
providing additional insights into the security consider-
ations and potential challenges when interfacing with 
vehicle systems, especially in the context of autonomous 
military fleets and security-critical applications. Addressing 
security considerations and scalability aspects could 
further strengthen the paper’s applicability. Nice et al. [8] 
leveraged CAN data within ROS to enhance vehicular 
control by introducing CAN Coach, a ROS node that inter-
faces with a CAN data to provide real-time feedback to 
human drivers. Experiments were conducted on a freeway 
route involving two vehicles: a lead vehicle and an ego 
vehicle to test various control objectives, including main-
taining a Constant Time-gap, Velocity Matching, and 
Dynamic Time-gap control. The results demonstrated 
that providing feedback to human drivers through CAN 
data, integrated with ROS, can contribute to improved 
traffic flow and safety. The paper highlights the need for 
measurements of vehicle velocity, relative velocity, and 
space-gap (distance to the lead vehicle). This data is 
obtained from radar sensors and wheel encoders 
connected to the CAN bus of a 2020 Toyota Rav4 Hybrid 
with Adaptive Cruise Control (ACC) and a data logging 
device (Gray Panda) connected to a Raspberry Pi 4. It 
provides insights into CAN Data Handling (how CAN data 
can be accessed and utilized within the ROS framework) 
and use of ROS for real-time data processing, which was 
essential for this study.

In automotive cybersecurity, research has extensively 
unveiled vulnerabilities in vehicle network communication 
[9], emphasizing the imperative for secure communication 
within contemporary vehicles. Recognized standards like 
SAE J3061saej3061 and ISO 26262 iso26262address 
these cybersecurity concerns in the automotive industry. 
While traditional approaches, exemplified by penetration 



	 5� FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

testing, have proven effective, they grapple with chal-
lenges of being time-consuming, costly, and sometimes 
hazardous. Pradeep et al.[10] contribute significantly by 
presenting a hardware-in-loop-based automotive cyber-
security evaluation testbed. This testbed endeavors to 
establish a secure virtual environment for evaluating 
cyber threats and risks associated with vehicular attacks. 
The framework integrates vehicle and powertrain models, 
mobility and network simulators, and actual hardware 
running control algorithms using CAN communication, 
focusing on expedited testing and assessment within a 
simulated environment. While the referenced paper 
predominantly addresses cybersecurity through simu-
lating attacks in a controlled setting, our work extends 
into the performance-oriented dimension of automotive 
cybersecurity, connecting CAN communication to the ROS 
environment and scrutinizing that intersection.

The study by Liu et al.[11] investigates optimal data 
transmission for collaborative driving in autonomous 
vehicular networks (AVNs) using the Robot Operating 
System (ROS) and addresses challenges in scheduling 
contending data flows in bandwidth-constrained vehicular 
networks. It models the ROS-based scheme as an opti-
mization problem, using Lyapunov Optimization to calcu-
late power allocation and conflict avoidance. The contribu-
tions include multi-user collaboration, joint performance 
optimization, and ensuring system stability over a long 
time span. However, this paper notably omits an in-depth 
exploration of the data communication intricacies 
between ROS and the Controller Area Network (CAN), a 
critical aspect for the seamless operation of autonomous 
vehicular networks. Understanding the dynamics of data 
exchange between these systems is crucial for achieving 
comprehensive optimization in autonomous vehic-
ular networks.

Methodology
In this work, message-based fuzzing, a form of white-box 
fuzzing, was used. It is also known as protocol or network 
message fuzzing and is a technique used in software 
testing and security assessment to discover vulnerabilities 
and defects in network protocols, communication inter-
faces, and message-driven systems. It can be valuable 
for uncovering issues such as input validation vulnerabili-
ties, message handling errors, and buffer overflows that 
may not be apparent during regular operation, as well as 
other software defects that could be  exploited by 
attackers. In the following, we describe how message-
based fuzzing works:

•• Target: Typically applied to communication 
protocols, network services, or any software that 
processes incoming messages or data packets, such 
as network servers, web applications, IoT devices, 
and more.

•• Test Input Generation: Fuzzing tools generate a 
wide range of test messages, data packets, or 

inputs that conform to the protocol or data format 
being tested. These test inputs often include valid 
messages as well as random (it generates random 
or semi-random data as test inputs, exploring a 
wide input space), intentionally malformed, or 
mutated ones (it starts with valid inputs and applies 
mutations, such as bit flips, additions, deletions, or 
permutations, to create variations).

•• Delivery to Target: The test messages that have 
been generated are transmitted to the target 
software or system via a network connection or 
through suitable communication channels, such as 
the CAN bus or ROS topics.

•• Monitoring and Analysis: Fuzzing tools consistently 
observe the actions and responses of the target 
system while it is engaged in processing the test 
messages. The observers monitor for any 
unforeseen or atypical reactions, such as system 
crashes, freezes, error messages, memory 
inefficiencies, or any other abnormal occurrences.

•• Bug Identification: When the fuzzing tool identifies 
an inconsistency or atypical behavior, it notifies this 
occurrence as a prospective vulnerability or flaw. 
Subsequently, security analysts or developers may 
proceed to examine the matter in order to ascertain 
its level of seriousness and potential consequences. 
In this study, defects was deliberately introduced 
into the source code of a CAN simulation and 
exploited a vulnerability in the access policy code 
that shields the ROS environment against external IP 
addresses not registered on the network. The 
objective was to induce unusual behavior and 
examine the system’s response. The crash time of 
the application running on the different platforms 
was recorded.

In a system, such a a s ROS or a CAN bus network, 
transmitting random data to a specific topic or employing 
random CAN IDs and payloads is as a variant of message-
based fuzzing. This is how it is applicable to each of these 
situations:

ROS Topic Fuzzing  The act of transmitting arbitrary 
or unexpected data to a designated ROS topic can 
be understood as a means of subjecting the message 
processing capabilities of the ROS nodes that are 
subscribed to said topic to a form of fuzzing. The objec-
tive is to analyze the behavior of the ROS system when 
it encounters messages that are unexpected or 
malformed. This practice can facilitate the identification 
of vulnerabilities or deficiencies in the logic employed by 
ROS nodes for message handling.

CAN Bus Fuzzing  The act of transmitting random 
CAN Identifiers (IDs) and payloads can be classified as a 
demonstration of CAN bus fuzzing. The latter is a tech-
nique that entails the transmission of malformed or unan-
ticipated messages over a Controller Area Network (CAN). 
The primary objective of this practice is to assess the 
resilience and security of the interconnected systems 
reliant on the CAN bus. The user’s text does not provide 
any information. The manipulation of CAN IDs and 



	 6 FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

payloads enables the examination of the response of 
various nodes within the CAN bus to unanticipated or 
invalid messages. This process has the potential to unveil 
vulnerabilities or deficiencies in the communication proto-
cols employed by the network.

Experimental Setup
In the CAN segment, we employed three Raspberry Pi 
units was used and equipped with the PICAN Shield, 
transforming them into distinct Electronic Control Units 
(ECUs) simulating critical vehicle functions: the 
Speedometer ECU (CAN ID: 244) monitors and controls 
speedometer functionality, ensuring real-time representa-
tion of the vehicle’s speed; the Door Lock ECU (CAN ID: 
19B) manages the vehicle’s door locking system, enhancing 
security and convenience; the Pointer Signal ECU (CAN 
ID: 188) oversees various instrument cluster indicators, 
interpreting signals from sensors and systems to provide 
essential visual feedback to the driver. To evaluate the 
resilience of these Raspberry Pi-based ECUs, they were 
subjected to three types of bug namely dereferencing 
pointer (A), buffer overflow(B), and divide by zero (D)
assessing their robustness and dependability under chal-
lenging conditions.

The CAN-to-ROS integration in the ROS segment is 
dependent on three essential nodes: the socketcan 
bridge, which facilitates communication between ROS 
and the CAN bus; the socketcan interface, which offers a 
reliable access to the SocketCAN driver; and the ros to 
can node. By implementing the ROS Noetic framework, 
Gazebo [12] was employed. It is a robotics simulation 
software seamlessly integrated with ROS to serve as a 
robust platform for constructing a dynamic simulation 
environment, orchestrating the autonomous movements 
of three Husky robots. This virtual setting proved instru-
mental in the testing and refinement of the CAN-to-ROS 
integration, Within this simulated domain, the Husky 
robots were meticulously configured to subscribe to the 
cmd vel topic for precise movement control, with the ROS 
master facilitating seamless communication among the 
Huskies and other integral system packages

To provide smooth communications between the 
CAN and ROS components, the socketcan bridge package 
was utilized. The aforementioned package facilitates the 
transmission of Controller Area Network (CAN) frames 
from the socketCAN interface to a topic in the Robot 
Operating System (ROS). It achieves this by exploiting the 
socketcan interface provided by the ros canopen package. 
The integration facilitated the utilization of both conven-
tional and extended CAN frames. The socketcan interface 
package introduced three crucial functionalities, namely 
StateInterface, CommInterface, and DriverInterface. These 
functionalities encompass monitoring the state of the 
driver, handling message receiving and transmission, and 
integrating vital management capabilities.

In order to construct the bridge between the 
Controller Area Network (CAN) and the Robot Operating 
System (ROS), we employed the Peak CAN USB adapter[13]. 
This adapter facilitated a simplified connection between 
CAN networks and the ROS network. The bridge incor-
porated a node within the /gazebo package, which facili-
tated message-level communication between the CAN 
and ROS systems. The aforementioned node performs 
the task of converting data obtained from the ROS topic 
/cmd vel into the appropriate format for CAN messages, 
which are subsequently transmitted over the CAN bus. 
The conversion and transmission process were managed 
by the socketcan bridge node, which published received 
frames on the received messages topic and transmitted 
messages to the SocketCAN device.

During the testing scenario, the ROS fuzzer was 
responsible for generating geometric messages on the /
cmd vel topic. The ROS-to-CAN node facilitated the 
conversion of these messages into the CAN format, 
enabling the subsequent application of fuzzing techniques 

  FIGURE 3    CAN Bus Setup

  FIGURE 4    Integrated Network



	 7� FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

on the CAN bus. The extensive configuration facilitated a 
full evaluation of the CAN-ROS system, leading to the 
identification of software crashes on each Raspberry Pi. 
This analysis yielded significant findings regarding the 
system’s resilience and dependability.

Fuzzing process
Following a comprehensive analysis of three prominent 
open-source fuzzing tools, namely Linux CAN Utils 
(Cangen)[14], Caring Caribou Fuzzer[15], and SavvyCAN[16], 
it became evident that the Caring Caribou Fuzzer Module 
outperformed its counterparts in two critical aspects, 
namely the generation of valid messages and the ability 
to induce crashes within the CAN bus network. Notably, 
it exhibited superior performance both in scenarios with 
and without additional network traffic. Consequently, the 
Caring Caribou Fuzzer Module was selected as the 
primary candidate for further scrutiny and evaluation 
within the integrated system. Renowned as a dedicated 
automotive security exploration tool for the CAN bus, its 
track record of effectiveness made it the logical choice 
for CAN fuzzing in our study.

In parallel, a custom ROS fuzzer was crafted to fulfill 
specific requirements. Designed to generate test cases 
within the system. Its objective was to ensure the creation 
of valid messages and provoke crashes within the CAN 
bus network, both under normal operating conditions 
and scenarios with heightened network activity. The 
choice to proceed with the ROS fuzzer for subsequent 
testing and analysis of the integrated system rested on 
its robust performance in meeting the following essen-
tial criteria:

	 1.	 Fuzzing the CAN Bus Alone: This scenario 
centers on the standalone fuzzing of the CAN 
bus. Utilizing the Caring Caribou Fuzzer Module, 
random fuzzing is executed across all possible 
CAN IDs within the network until a bug is 
triggered. The elapsed time taken to induce a 
crash is automatically recorded by a dedicated 
Bash script, providing insights into the efficiency 
and effectiveness of the fuzzing process.

	 2.	 Fuzzing the CAN Bus with a ROS Fuzzer: In this 
scenario, the ROS environment is initiated using 
roslaunch. Subsequently, the socketcan 
bridge node and ros to can node are activated, 
followed by the execution of the ROS fuzzer node. 
The core premise involves employing the ros to 
can node to actively translate ROS messages into 
CAN bus-compatible formats for the purpose of 
fuzzing. This methodology assesses the interplay 
and compatibility between ROS and the CAN bus 
during fuzzing operations.

	 3.	 Fuzzing Both Systems Simultaneously Using 
the CAN-to-ROS Bridge: This progressive 
scenario entails the concurrent deployment of 
both the CAN Fuzzer and ROS Fuzzer to identify 
vulnerabilities and provoke crashes. The duration 
required to destabilize the program is 

meticulously recorded, offering insights into the 
overall robustness and resilience of the integrated 
system under a simultaneous dual-fuzzing assault.

To assess the effectiveness of each fuzzer, a set of 
metrics was employ, with crash time serving as the 
cornerstone. Crash time precisely measures the duration 
from the initiation of fuzzing to the occurrence of a 
system crash. This metric evaluates a fuzzers effective-
ness. Furthermore, utilized additional metrics, including:

•• Number of Crashes Encountered: This metric 
quantifies the frequency of system crashes provoked 
by the fuzzer. Our experimentation involved 168 runs 
for each fuzzer and 54 runs for every ECU and bug 
type combination. This dataset provides insights into 
the fuzzer’s capability.
In this case, a “crash” refers to the software being 

tested behaves unexpectedly or application shutdown. 
These crashes are essentially unintended consequences 
of fuzzing and are indicative of potential vulnerabilities or 
weaknesses within the system and may manifest as unex-
pected errors, system freezes, or even system shutdowns.
Crash time was measured which quantifies how quickly 
a fuzzer identifies and triggers these unintended behav-
iors. A smaller crash time indicates a more effective fuzzer 
because it identifies vulnerabilities more rapidly.
•• Code Coverage Achieved During Fuzzing: 
Measuring the depth of exploration within the 
system’s codebase during testing, this metric 
showcases the fuzzer’s capacity to identify potential 
bugs and vulnerabilities. Together, these metrics 
constitute a robust framework for evaluating each 
fuzzer’s performance comprehensively. They enable 
us to conduct a thorough assessment of their 
prowess in the identification of vulnerabilities and 
the revelation of potential flaws within both the CAN 
and ROS systems.

Evaluation

Experimental Design and Data 
Collection
In our experimental design, the following three hypoth-
eses was tested:

•• Hypothesis 1: Fuzzing the unified system is more 
effective in uncovering vulnerabilities and inducing 
crashes than fuzzing its individual components 
in isolation.

•• Hypothesis 2: There exists a statistically significant 
difference between the performance of the ROS 
fuzzer on the CAN bus compared to the CAN fuzzer 
in terms of crash induction and 
vulnerability detection.

•• Hypothesis 3: There exists a statistically significant 
interaction between the fuzzing scenarios (CAN 



	 8 FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

Fuzzer, ROS Fuzzer, and CAN and ROS Fuzzer) and 
the types of bugs injected (dereferencing, buffer 
overflow, and divide by zero) concerning the ECU 
functions (signal, speedometer, door functions).

The experiments involved data collection using moni-
toring and logging tools, namely PCAN-View and rosbag. 
PCAN-View[17], a user-friendly software tool tailored for 
monitoring, analyzing, and logging CAN bus data, played 
an integral role in the real-time observation and analysis 
of raw CAN data throughout the CAN-to-ROS integration 
phase. Concurrently, Rosbag [18], a command-line utility 
within the ROS, was deployed for the recording, playback, 
and analysis of ROS message data disseminated across 
ROS topics during simulations.

To enhance the observational capabilities, a bash 
script was employed to monitor the simulation tool’s 
behavior and record system crashes. The PCAN-View tool 
complemented this by providing additional data logging 
and validation, generating precise log files for each experi-
mental case. Simultaneously, rosbag served as a supple-
mentary data recording tool, ensuring redundancy and 
resilience in data collection. This approach to error detec-
tion enabled assessment of the performance and reli-
ability of both the ROS fuzzer on the CAN bus and the 
CAN fuzzer. We analysed the data, including: crash times, 
system behavior patterns, and error logs.

This analysis was conducted to identify patterns or 
trends in the timing and nature of crashes, ultimately 
shedding light on the effectiveness of the fuzzing meth-
odologies and their impact on the integrated system’s 
robustness and reliability. Three statistical techniques 
were used: ANOVA (Analysis of Variance), Tukey-Kramer 
post hoc tests, and linear regression. ANOVA compares 
means among multiple groups, determining if significant 
differences exist between groups concerning a dependent 
variable. It is crucial in testing Hypothesis 1, which suggests 
that unified system fuzzing is more effective than indi-
vidual components fuzzing in isolation.

Tukey-Kramer post-hoc tests identify specific groups 
with significant differences in means, helping to substan-
tiate or refute Hypothesis 1. Linear regression is used to 
address Hypothesis 2, which asserts a significant differ-
ence between the performance of the ROS fuzzer on the 
CAN bus and the CAN fuzzer in terms of crash induction 
and vulnerability detection. This analytical approach helps 
quantify the extent of any performance disparity between 
the ROS fuzzer and the CAN fuzzer. The combination of 
these techniques provides a robust analytical framework 
for assessing hypotheses and gaining valuable insights 
into fuzzing scenarios’ effectiveness in ensuring system 
robustness and security.

Results
The results now present the findings based on the three 
fuzzing scenarios (F1 (CAN Fuzzer), F2 (ROS Fuzzer) and 
F3 (CAN and ROS Fuzzer), comparing their effectiveness. 

The metric for effectiveness is the crash time, where a 
smaller crash time indicates a more effective fuzzer as it 
takes less time to find bugs. Statistical analysis, including 
ANOVA and Tukey-Kramer post hoc tests, provides robust 
support for Hypothesis 1. The ANOVA analysis reveals a 
significant impact of the Fuzzer factor (representing 
different fuzzing scenarios) on crash times (p >0.05). This, 
in turn, underscores that there are statistically significant 
differences in crash times among the various 
fuzzing scenarios.

Delving deeper into these differences, our Tukey-
Kramer post-hoc tests as seen in Figure 5 indicate several 
key findings. Firstly, a significant difference in crash times 
is observed between F1 (CAN Fuzzer) and F2 (ROS Fuzzer), 
implying distinct performances during the fuzzing process. 
Secondly, F2 (ROS Fuzzer) and F3 (CAN and ROS Fuzzer) 
exhibit a significant difference in crash times. However, 
intriguingly, no significant difference in crash times is 
found between F1 and F3. This outcome suggests that 
fuzzing both systems simultaneously (F3) doesn’t signifi-
cantly outperform fuzzing the CAN bus alone (F1) in terms 
of crash induction time.

Our linear regression analysis support for Hypothesis 
2. The analysis reveals a significant F-statistic (51.84, 
p-value >2.2e-16), indicating a substantial influence of the 
choice of fuzzer on crash times. Specifically, Fuzzer 2 (ROS 
Fuzzer) demonstrates a positive association with “time,” 
signifying longer crash times, and thereby suggesting a 
longer duration to uncover system vulnerabilities. In 
contrast, Fuzzer 3 (CAN and ROS Fuzzer) exhibits a 
negative association with ‘Time’, indicating its efficiency 
in swiftly identifying bugs within the system. Consequently, 
these results robustly support Hypothesis 2, emphasizing 
a statistically significant difference in crash times between 
the ROS Fuzzer (F2) and the CAN Fuzzer (F1).

In the evaluation of different fuzzers for testing the 
CAN-ROS system, Figure 6 depicted in the boxplots offer 
valuable insights into their respective performances. F3 
stands out with a notably lower median and quartile 
values compared to F1 and F2. This implies that F3, on 
average, spent less time in identifying vulnerabilities 
within the system. The maximum values, excluding 
outliers, for F3 are also comparatively lower, indicating a 

  FIGURE 5    Multiple Comparisons of Means (Tukey Contrasts)



	 9� FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

consistent efficiency in the detection of bugs. In contrast, 
F1 and F2 exhibit higher median and quartile values, 
suggesting a relatively longer time to discover vulnerabili-
ties. The boxplots collectively suggest that F3 is more 
effective in terms of time efficiency, potentially making it 
a preferable choice for future testing scenarios. These 
results illuminate the relative strengths of each fuzzer, 
providing a quantitative basis for understanding their 
performances in the context of the CAN-ROS system.

Discussion
The shift towards increasingly automated and intercon-
nected vehicle systems necessitates a proportional evolu-
tion in security testing methodologies. The diverse perfor-
mance of the fuzzers in detecting different types of bugs 
reflects the complexity of modern vehicle systems, high-
lighting the need for comprehensive testing frameworks 
that can adapt to various components and their unique 
vulnerabilities.

The objective of this study was to evaluate and 
compare the performance of three different fuzzers — 
CAN Fuzzer, ROS Fuzzer, and ROS and CAN Fuzzer — in 
terms of their ability to discover bugs in our system. The 
primary criterion for assessing their effectiveness was 
the crash time, which reflects the time taken to uncover 
vulnerabilities or issues within the tested software.

As shown in Table 1, Fuzzer 1 was most effective at 
identifying vulnerabilities associated with the derefer-
encing bug, with buffer overflow exhibiting the longest 
mean crash time. This indicates that Fuzzer 1 is less effec-
tive at finding buffer overflow vulnerabilities. Signal had 
the longest mean crash time for Fuzzer 1, indicating its 
potential robustness in this context. The results indicate 
that Fuzzer 1 is capable of identifying vulnerabilities in a 
variety of test types.

The evaluation of Fuzzer 2 revealed distinct patterns 
in mean crash times for various categories of bugs and 
ECU function tests. According to the findings, the ROS 
Fuzzer had the longest crash times, which could be attrib-
uted to a number of factors, including the complexity of 
the ROS ecosystem, which may have more layers of 

abstraction than traditional CAN systems, potentially 
leading to a larger attack surface and more complex inter-
actions that are more difficult to predict and test effec-
tively. Also, the presence of the ROS to CAN translator 
node in the fuzzing process is notable. This node serves 
as a link between the high-level and complicated ROS 
messages and the low-level and protocol-constrained 
CAN frames. this node acts as a bridge between the ROS 
messages, which are typically high-level and complex, 
and the CAN frames, which are low-level and constrained 
by the CAN bus protocol. The translator node’s role had 
implications for the effectiveness of the fuzzing process 
as the translation process introduces latency. Its longer 
crash times might be partly attributable to the complexity 
of translating ROS messages into CAN frames.

The findings suggest that the ROS Fuzzer had the 
longest crash times, which could be due to a variety of 
factors such as the complexity of the ROS ecosystem, 
which may have more layers of abstraction than tradi-
tional CAN systems, potentially leading to a larger attack 
surface and more complex interactions that are harder 
to predict and test effectively. A notable point is the 
presence of the ROS to CAN translator node into the 
fuzzing process, this node acts as a bridge between the 
ROS messages, which are typically high-level and complex, 
and the CAN frames, which are low-level and constrained 
by the CAN bus protocol. The translator node’s role had 
implications for the effectiveness of the fuzzing process 
as the translation process introduces latency. Its longer 
crash times might be partly attributable to the complexity 
of translating ROS messages into CAN frames. The 

  FIGURE 6    Boxplot for Fuzzers TABLE 1  Comparison Tables

F1: CAN Fuzzer
Level Time Mean Std Error
A 54 84.667 18.225
B 54 154.648 18.225
D 54 133.574 18.225
Door 8081 287.145 24.405
Signal 8899 324.921 23.256
Speed 3156 89.346 39.051
F2: ROS Fuzzer
Level Time Mean Std Error
A 54 324.537 77.863
B 54 513.944 77.863
D 54 489.685 77.863
Door 40882 1634.84 74.72
Signal 23256 699.01 99.07
Speed 7583 245.59 173.50
F3: CAN and ROS Fuzzer
Level Time Mean Std Error
A 54 78.574 12.388
B 54 108.241 12.388
D 54 76.426 12.388
Door 2930 202.046 17.560
Signal 5691 199.926 12.600
Speed 1467 84.175 24.817



	 10 FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING

fuzzing program must account for both the translation 
logic and the final CAN frames, which could explain why 
it took so long to find system flaws. This highlights the 
importance of comprehensive fuzzing methodologies that 
evaluate both the translation logic and the output.

The findings of the Fuzzer 3 investigation unveiled 
notable patterns in the average duration of crashes across 
several bug kinds and ECU function test types. The experi-
mental results indicate that Fuzzer 3 had superior perfor-
mance in discovering vulnerabilities, as evidenced by the 
lowest mean crash time seen between divide by zero and 
dereferencing pointer.

The fact that no significant difference in crash times 
was observed between the CAN Fuzzer and the combined 
CAN and ROS Fuzzer suggests that the CAN bus might 
be  the limiting factor in these scenarios or that the 
combined approach does not synergistically improve the 
fuzzing process as might be expected.

Overall, Fuzzer 2 exhibited the highest mean crash 
times for all bugs, as well as in the ECUs. However, it’s 
important to note that Fuzzer 3 outperformed Fuzzer 1. 
In terms of ECU function test types, Door consistently 
showed the highest mean crash times for both Fuzzer 2 
and Fuzzer 3, while Signal demonstrated the highest 
mean crash time for Fuzzer 1, and in terms of bugs, buffer 
overflow was the longest, followed by divide by zero and 
dereferencing pointer.

Conclusion
In conclusion, the choice of a fuzzer plays a pivotal role 
in the efficiency of bug discovery within a system. The 
ability to achieve lower crash times is indicative of faster 
and more effective bug detection, a crucial factor in 
security testing and software vulnerability assessment. 
Based on the comprehensive findings of this study, Fuzzer 
3, which simultaneously deploys both fuzzers, emerges 
as the most efficient and effective option among the three 
evaluated. This suggests that Fuzzer 3 is exceptionally 
well-suited for security testing tasks where rapid bug 
identification is of paramount importance.

While Fuzzer 1 and Fuzzer 3 did demonstrate compet-
itive performance in certain scenarios, they generally 
exhibited shorter crash times, implying a comparatively 
swifter bug discovery process. It is important to note that 
the difference in performance between these two fuzzers 
and Fuzzer 3 is relatively slim, with an estimated gap of 
just 139 seconds. In contrast, Fuzzer 2 performed poorly 
across the board. Ultimately, the selection of the most 
suitable fuzzer should be driven by the specific require-
ments and objectives of the security testing project at 
hand. Fuzzer 3’s superior performance, particularly in 
terms of faster bug discovery, positions it as a valuable 
tool for security professionals seeking efficient vulnera-
bility assessment.

By addressing the specific challenges posed by collab-
orative driving, our future research is designed to not only 
enhance the efficiency and reliability of autonomous 

vehicular systems but also to rigorously examine the 
security aspects within these systems. A critical compo-
nent of this future work will be an in-depth analysis of 
the CAN bus fuzzer’s interaction with the ROS system. 
We explicitly aim to conduct an independent assessment 
of ROS, isolating its vulnerabilities. This focused explora-
tion will be pivotal in identifying any inherent susceptibili-
ties within ROS, thereby contributing significantly to forti-
fying the security of the integrated CAN-ROS environ-
ment. Our commitment is to provide a detailed and 
comprehensive understanding of the security implications 
at both the individual and integrated system levels, 
ensuring a robust and resilient framework for autono-
mous vehicular technologies.

References
	 1.	 Plot, J.A., “Red team in a Box (RTIB): Developing 

Automated Tools to Identify, Assess, and Expose 
Cybersecurity Vulnerabilities in Department of The Navy 
Systems,” Ph.D. dissertation, Monterey, CA; Naval 
Postgraduate School, 2019.

	 2.	 Riebe, T., Schmid, S., and Reuter, C., “Meaningful Human 
Control of Lethal Autonomous Weapon Systems: The 
CCW-Debate and Its Implications for VSD,” IEEE 
Technology and Society Magazine 39, no. 4 (2020): 36-51.

	 3.	 Sommer, F., Dürrwang, J., and Kriesten, R., “Survey and 
Classification of Automotive Security Attacks,” 
Information 10, no. 4 (2019): 148.

	4.	 Mehr, G., Ghorai, P., Zhang, C. et al., “X-Car: An 
Experimental Vehicle Platform for Connected Autonomy 
Research,” IEEE Intelligent Transportation Systems 
Magazine 15, no. 2 (2023): 41-57, doi:10.1109/
MITS.2022.3168801.

	 5.	 Fowler, D.S., Bryans, J., Shaikh, S.A., and Wooderson, P., 
“Fuzz Testing for Automotive Cyber-Security,” in 2018 
48th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks Workshops (DSN-W), 
2018, 239-246, 10.1109/DSN-W.2018.00070.

	6.	 Manès, V.J., Han, H., Han, C. et al., “The Art, Science, and 
Engineering of Fuzzing: A Survey,” IEEE Transactions on 
Software Engineering 47, no. 11 (2021): 2312-2331, 
doi:10.1109/TSE.2019.2946563.

	 7.	 Elmadani, S., Nice, M., Bunting, M., Sprinkle, J. et al., 
“From Can to ROS: A Monitoring and Data Recording 
Bridge,” in Proceedings of the Workshop on Data-Driven 
and Intelligent Cyber-Physical Systems, ser. DI-CPS’21 
(Nashville, TN: Association for Computing Machinery, 
2021), 17-21, https://doi.org/10.1145/3459609.3460531.

	8.	 Nice, M., Elmadani, S., Bhadani, R., Bunting, M. et al., “Can 
Coach: Vehicular Control through Human Cyber-Physical 
Systems,” in Proceedings of the ACM/IEEE 12th 
International Conference on Cyber-Physical Systems, 2021, 
132-142.

	9.	 Haas, R.E., and Möller, D.P.F., “Automotive Connectivity, 
Cyber Attack Scenarios and Automotive Cyber Security,” 
in 2017 IEEE International Conference on Electro 

http://dx.doi.org/10.1109/MITS.2022.3168801
http://dx.doi.org/10.1109/MITS.2022.3168801
http://dx.doi.org/10.1109/DSN-W.2018.00070
http://dx.doi.org/10.1109/TSE.2019.2946563
http://dx.doi.org/https://doi.org/10.1145/3459609.3460531


© 2024 Clemson University. Published by SAE International. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any 
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder(s). 

Positions and opinions advanced in this work are those of the author(s) and not necessarily those of SAE International. Responsibility for the content of the work 
lies solely with the author(s).

ISSN 0148-7191

FUZZING CAN VS. ROS: AN ANALYSIS OF SINGLE-COMPONENT VS. DUAL-COMPONENT FUZZING 	 11

Information Technology (EIT), 635-639, 2017, https://api.
semanticscholar.org/CorpusID:7769642.

	10.	 Oruganti, P.S., Appel, M., and Ahmed, Q., “Hardware-in-
Loop Based Automotive Embedded Systems 
Cybersecurity Evaluation Testbed,” in Proceedings of the 
ACM Workshop on Automotive Cybersecurity, ser. AutoSec 
‘19 (Richardson, TX: Association for Computing 
Machinery, 2019), 41-44, https://doi.
org/10.1145/3309171.3309173.

	11.	 Liu, R., Zheng, J., Luan, T.H. et al., “Ros-Based 
Collaborative Driving Framework in Autonomous 
Vehicular Networks,” IEEE Transactions on Vehicular 
Technology 72, no. 6 (2023): 6987-6999, doi:10.1109/
TVT.2023.3236978.

	12.	 Koenig, N. and Howard, A., “Gazebo: Simulating Robots 
in a 3D Environment,” IEEE Robotics & Automation 
Magazine 13, no. 3 (2006): 42-53.

	13.	 PEAK-System Technik GmbH, Peak pcan user manual 
(PEAK-System Technik GmbH, 2022)

	14.	 Linux CAN Utils, “Socketcan Userspace Utilities and 
Tools,” accessed August 2023, https://github.com/linux-
can/can-utils.

	15.	 Caribou, C., “A Automotive Security Exploration Tool,” 
accessed August 2023, https://github.com/
CaringCaribou/caringcaribou.

	16.	 SavvyCAN, “Can Bus Reverse Engineering and Capture 
Tool,” accessed August 2023, https://www.savvycan.
com/.

	17.	 PEAK-System Technik GmbH, “PCAN-View,” accessed 
August 2023, https://www.peak-system.com/PCAN-
View.242.0.html.

	18.	 Open Source Robotics Foundation, “ROS - Rosbag,” 
2022, http://wiki.ros.org/rosbag.

Contact Information
Iwinosa Aideyan,
Clemson University
iaideya@clemson.edu

Richard Brooks, Ph.D.
Clemson University
rrb@clemson.edu

Mert D. Pesé, Ph.D.
Clemson University
mpese@clemson.edu

Acknowledgments
This work was supported by Clemson University’s Virtual 
Prototyping of Autonomy Enabled Ground Systems (VIPR-
GS), under Cooperative Agreement W56HZV-21-2-0001 
with the US Army DEVCOM Ground Vehicle Systems 
Center (GVSC).

Definitions, Acronyms, 
Abbreviations
PUT - Program Under Test
CAN - Controller Area Network
ROS - Robot Operating System

https://api.semanticscholar.org/CorpusID:7769642
https://api.semanticscholar.org/CorpusID:7769642
http://dx.doi.org/https://doi.org/10.1145/3309171.3309173
http://dx.doi.org/https://doi.org/10.1145/3309171.3309173
http://dx.doi.org/10.1109/TVT.2023.3236978
http://dx.doi.org/10.1109/TVT.2023.3236978
https://github.com/linux-can/can-utils
https://github.com/linux-can/can-utils
https://github.com/CaringCaribou/caringcaribou
https://github.com/CaringCaribou/caringcaribou
https://www.savvycan.com/
https://www.savvycan.com/
https://www.peak-system.com/PCAN-View.242.0.html
https://www.peak-system.com/PCAN-View.242.0.html
http://wiki.ros.org/rosbag
iaideya@clemson.edu
rrb@clemson.edu
mpese@clemson.edu

	10.4271/2024-01-2795: Abstract
	Introduction
	Background
	In-Vehicle Network Communication Technologies
	Controller Area Network
	Robot Operating System
	Vehicle Hardware Abstraction Layer
	Importance of CAN-to-ROS Integration
	Fuzzing and its role in security testing

	Related Work
	Methodology
	Experimental Setup
	Fuzzing process

	Evaluation
	Experimental Design and Data Collection

	Results
	Discussion
	Conclusion

	References
	Acknowledgments
	Definitions, Acronyms, Abbreviations

